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COMBINED 2-FIBONACCI SEQUENCES. Part 2
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Abstract. Two new sequences from Fibonacci type are introduced and the explicit formulae

for their n-th members are given.
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In [2, 4, 5, 6] four different ways of constructing two sequences {αi}∞i=0 and {βi}∞i=0 are

described and called 2-Fibonacci sequences (or 2-F-sequences). On their base, in [3] the

following two new schemes are introduced.

α0 = 2a, β0 = 2b, α1 = 2c, β1 = 2d

αn+2 =
αn+1 + βn+1

2 + βn, n ≥ 0

βn+2 =
αn+1 + βn+1

2 + αn, n ≥ 0

,

and
α0 = 2a, β0 = 2b, α1 = 2c, β1 = 2d

αn+2 =
αn+1 + βn+1

2 + αn, n ≥ 0

βn+2 =
αn+1 + βn+1

2 + βn, n ≥ 0

.

Let σ be the integer function defined for every k ≥ 0 by:

r σ(4.k + r)

0 0

1 1

2 0

3 −1
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Obviously, for every n ≥ 0,

σ(n+ 2) + σ(n) = 0.

In [3] the following two assertions are formulated and proved for these two sequences.

THEOREM 1. For every natural number n ≥ 0

αn+2 = (Fn+1 + σ(n− 1)).a+ (Fn+1 + σ(n+ 1)).b+ (Fn+2 + σ(n+ 2)).c+ (Fn+2 + σ(n)).d

βn+2 = (Fn+1 + σ(n+ 1)).a+ (Fn+1 + σ(n− 1)).b+ (Fn+2 + σ(n)).c+ (Fn+2 + σ(n+ 2)).d.

THEOREM 2. For each natural number n ≥ 0

αn+2 = (Fn+1 + ρ(n)).a+ (Fn+1 − ρ(n)).b+ (Fn+2 + ρ(n+ 1)).c+ (Fn+2 − ρ(n+ 1)).d

βn+2 = (Fn+1 − ρ(n)).a+ (Fn+1 + ρ(n)).b+ (Fn+2 − ρ(n+ 1)).c+ (Fn+2 + ρ(n+ 1)).d.

Now, we will introduce two new schemes. The first one is:

α0 = 2a, β0 = 2b, α1 = 2c, β1 = 2d

αn+2 = βn+1 + αn + βn
2 , n ≥ 0

βn+2 = αn+1 + αn + βn
2 , n ≥ 0

,

where a, b, c, d are given constants.

If we set a = b and c = d, then sequences {αi}∞i=0 and {βi}∞i=0 will coincide with each

other and with the sequence {Fi}∞i=0, which is called a generalized Fibonacci sequence, where

F0(a, c) = a,

F1(a, c) = c,

Fn+2(a, c) = Fn+1(a, c) + Fn(a, c).

Let Fi = Fi(0, 1); {Fi}∞i=0 be the ordinary Fibonacci sequence.

The first 10 members of the first of the new schemes have the form shown on Table 1.

Table 1

αn βn

0 2a 2b

1 2c 2d

2 a+ b+ 2d a+ b+ 2c

3 a+ b+ 3c+ d a+ b+ c+ 3d

4 2a+ 2b+ 2c+ 4d 2a+ 2b+ 4c+ 2d
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5 3a+ 3b+ 6c+ 4d 3a+ 3b+ 4c+ 6d

6 5a+ 5b+ 7c+ 9d 5a+ 5b+ 9c+ 7d

7 8a+ 8b+ 14c+ 12d 8a+ 8b+ 12c+ 14d

8 13a+ 13b+ 29c+ 22d 13a+ 13b+ 22c+ 20d

9 21a+ 21b+ 35c+ 33d 21a+ 21b+ 33c+ 35d

THEOREM 3. For every natural number n ≥ 0

αn+2 = Fn+1.a+ Fn+1.b+ (Fn+2 + (−1)n+1).c+ (Fn+2 + (−1)n).d

βn+2 = Fn+1.a+ Fn+1.b+ (Fn+2 + (−1)n).c+ (Fn+2 + (−1)n+1).d

The proof of this assertion can be made, for example, by induction.

For n = 0 we see the validity of the two formulas from Table 1. Let us assume that these

formulas are valid for some natural number n ≥ 0. Then, having in mond that for every

natural number n ≥ 0

(−1)n + (−1)n+1 = 0,

we obtain

αn+3 = βn+2 +
αn+1 + βn+1

2

= Fn+1.a+ Fn+1.b+ (Fn+2 + (−1)n).c+ (Fn+2 + (−1)n+1).d

+
1

2
.(Fn.a+ Fn.b+ (Fn+1 + (−1)n).c+ (Fn + (−1)n−1).d

+Fn.a+ Fn.b+ (Fn+1 + (−1)n−1).c+ (Fn+1 + (−1)n).d))

= Fn+1.a+ Fn+1.b+ (Fn+2 + (−1)n).c+ (Fn+2 + (−1)n+1).d

+Fn.a+ Fn.b+ Fn+1.c+ Fn.d

= Fn+2.a+ Fn+2.b+ (Fn+3 + (−1)n).c+ (Fn+3 + (−1)n+1).d

= Fn+2.a+ Fn+2.b+ (Fn+3 + (−1)n+2).c+ (Fn+3 + (−1)n+1).d.

The formula for βn+3 may be checked in similar manner.

The second new sequence has the form:

α0 = 2a, β0 = 2b, α1 = 2c, β1 = 2d

αn+2 = αn+1 + αn + βn
2 , n ≥ 0

βn+2 = βn+1 + αn + βn
2 , n ≥ 0

,

where a, b, c, d are given constants.

The first 10 members of the second of the new schemes have the form shown on Table 2.
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Table 2

αn βn

0 2a 2b

1 2c 2d

2 a+ b+ 2c a+ b+ 2d

3 a+ b+ 3c+ d a+ b+ c+ 3d

4 2a+ 2b+ 4c+ 2d 2a+ 2b+ 2c+ 4d

5 3a+ 3b+ 6c+ 4d 3a+ 3b+ 4c+ 6d

6 5a+ 5b+ 9c+ 7d 5a+ 5b+ 7c+ 9d

7 8a+ 8b+ 14c+ 12d 8a+ 8b+ 12c+ 14d

8 13a+ 13b+ 22c+ 20d 13a+ 13b+ 20c+ 22d

9 21a+ 21b+ 35c+ 33d 21a+ 21b+ 33c+ 35d

THEOREM 4. For each natural number n ≥ 0

αn+2 = Fn+1.a+ Fn+1.b+ (Fn+2 + 1).c+ (Fn+2 − 1).d

βn+2 = Fn+1.a+ Fn+1.b+ +(Fn+2 − 1).c+ (Fn+2 + 1).d.

For n = 0 we see the validity of the two formulas from Table 2. Let us assume that these

formulas are valid for some natural number n ≥ 0. We shall check the validity of the second

formula for n+ 1.

βn+3 = βn+2 +
αn+1 + βn+1

2

= Fn+1.a+ Fn+1.b+ (Fn+2 − 1).c+ (Fn+2 + 1).d

+
1

2
(Fn.a+ Fn.b+ (Fn+1 + 1).c+ (Fn+1 − 1).d

(Fn.a+ Fn.b+ (Fn+1 − 1).c+ (Fn+1 + 1).d)

= Fn+1.a+ Fn+1.b+ (Fn+2 − 1).c+ (Fn+2 + 1).d

+Fn.a+ Fn.b+ Fn+1c+ Fn+1.d

= Fn+1.a+ Fn+1.b+ (Fn+3 − 1).c+ (Fn+3 + 1).d.

The formula for αn+3 may be checked in similar manner.

2. A digital arithmetic function will be described, following [1, 7].

Let

n =
k∑

i=1

ai.10k−i ≡ a1a2...ak,

21



where ai is a natural number and 0 ≤ ai ≤ 9 (1 ≤ i ≤ k). Let for n = 0 : ϕ(n) = 0 and for

n > 0:

ϕ(n) =
k∑

i=1

ai.

We shall use the decimal count system everywhere hereafter.

Let us define a sequence of functions ϕ0, ϕ1, ϕ2, ..., where (l is a natural number)

ϕ0(n) = n,

ϕl+1 = ϕ(ϕl(n)).

Obviously, for every l ∈ N : ϕl : N → N . Since for k > 1

ϕ(n) =
k∑

i=1

ai <
k∑

i=1

ai.10k−i = n.

Then for every n ∈ N , l ∈ N will exist so that

ϕl(n) = ϕl+1(n) ∈ ∆ ≡ {0, 1, 2, ..., 9}.

Let function ψ be defined by

ψ(n) = ϕl(n),

where

ϕl+1(n) = ϕl(n).

Let be given the sequence a1, a2, ..., with its members being natural numbers and let

ci = ψ(ai) (i = 1, 2, ...).

Hence, we deduce the sequence c1, c2, ... from the former sequence. If k and l exist so that

l ≥ 0,

ci+l = ck+i+l = c2k+i+l = ...

for 1 ≤ i ≤ k, then we, following [1], shall say that [cl+1, cl+2, ..., cl+k] is base of the sequence

a1, a2, ... with length of k and with respect to function ψ.

On Tables 3 and 4 we shall show that the two new sequences have bases with lenght 24.

Table 3

ψ(αn) = ψ(•) ψ(βn) = ψ(•)
0 2a 2b

1 2c 2d

2 a+ b+ 2d a+ b+ 2c

3 a+ b+ 3c+ d a+ b+ c+ 3d
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4 2a+ 2b+ 2c+ 4d 2a+ 2b+ 4c+ 2d

5 3a+ 3b+ 6c+ 4d 3a+ 3b+ 4c+ 6d

6 5a+ 5b+ 7c 5a+ 5b+ 7d

7 8a+ 8b+ 5c+ 3d 8a+ 8b+ 3c+ 5d

8 4a+ 4b+ 2c+ 4d 4a+ 4b+ 4c+ 2d

9 3a+ 3b+ 8c+ 6d 3a+ 3b+ 6c+ 8d

10 7a+ 7b+ 2d 7a+ 7b+ 2c

11 a+ b+ 7d a+ b+ 7c

12 8a+ 8b+ 8c+ d 8a+ 8b+ c+ 8d

13 7d 7c

14 8a+ 8b+ 7c 8a+ 8b+ 7d

15 8a+ 8b+ 8c+ 6d 8a+ 8b+ 6c+ 8d

16 7a+ 7b+ 5c+ 7d 7a+ 7b+ 7c+ 5d

17 6a+ 6b+ 5c+ 3d 6a+ 6b+ 3c+ 5d

18 4a+ 4b+ +2d 4a+ 4b+ 2c

19 a+ b+ 6c+ 4d a+ b+ 4c+ 6d

20 5a+ 5b+ 5c+ 7d 5a+ 5b+ 7c+ 5d

21 6a+ 6b+ 3c+ d 6a+ 6b+ c+ 3d

22 2a+ 2b+ 7c 2a+ 2b+ +7d

23 8a+ 8b+ 2c 8a+ 8b+ 2d

24 a+ b+ 8c+ d a+ b+ c+ 8d

25 2c 2d

Table 4

ψ(αn) = ψ(•) ψ(βn) = ψ(•)
0 2a 2b

1 2c 2d

2 a+ b+ 2c a+ b+ 2d

3 a+ b+ 3c+ d a+ b+ c+ 3d

4 2a+ 2b+ 4c+ 2d 2a+ 2b+ 2c+ 4d

5 3a+ 3b+ 6c+ 4d 3a+ 3b+ 4c+ 6d

6 5a+ 5b+ 7d 5a+ 5b+ 7c

7 8a+ 8b+ 5c+ 3d 8a+ 8b+ 3c+ 5d

8 4a+ 4b+ 4c+ 2d 4a+ 4b+ 2c+ 4d

9 3a+ 3b+ 8c+ 6d 3a+ 3b+ 6c+ 8d

10 7a+ 7b+ 2c 7a+ 7b+ 2d

11 a+ b+ 7d a+ b+ 7c

23



12 8a+ 8b+ c+ 8d 8a+ 8b+ 8c+ d

13 7d 7c

14 8a+ 8b+ 7d 8a+ 8b+ 7c

15 8a+ 8b+ 8c+ 6d 8a+ 8b+ 6c+ 8d

16 7a+ 7b+ 7c+ 5d 7a+ 7b+ 5c+ 7d

17 6a+ 6b+ 5c+ 3d 6a+ 6b+ 3c+ 5d

18 4a+ 4b+ 2c 4a+ 4b+ 2d

19 a+ b+ 6c+ 4d a+ b+ 4c+ 6d

20 5a+ 5b+ 7c+ 5d 5a+ 5b+ 5c+ 7d

21 6a+ 6b+ 3c+ d 6a+ 6b+ c+ 3d

22 2a+ 2b+ 7d 2a+ 2b+ 7c

23 8a+ 8b+ 2c 8a+ 8b+ 2d

24 a+ b+ c+ 8d a+ b+ 8c+ d

25 2c 2d
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