NNTDM 16 (2010) 4, 18-24 COMBINED 2-FIBONACCI SEQUENCES. Part 2

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling IBFBME – Bulg. Academy of Sci., Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria e-mail: krat@bas.bg

Abstract. Two new sequences from Fibonacci type are introduced and the explicit formulae for their *n*-th members are given.

Keywords: Fibonacci sequence, 2-Fibonacci sequence

2000 Mathematics Subject Classification: 11B39

In [2, 4, 5, 6] four different ways of constructing two sequences $\{\alpha_i\}_{i=0}^{\infty}$ and $\{\beta_i\}_{i=0}^{\infty}$ are described and called 2-*Fibonacci sequences* (or 2-*F*-sequences). On their base, in [3] the following two new schemes are introduced.

$$\alpha_{0} = 2a, \ \beta_{0} = 2b, \ \alpha_{1} = 2c, \ \beta_{1} = 2d$$
$$\alpha_{n+2} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \beta_{n}, \ n \ge 0$$
$$\beta_{n+2} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \alpha_{n}, \ n \ge 0$$

and

 $\alpha_0 = 2a, \ \beta_0 = 2b, \ \alpha_1 = 2c, \ \beta_1 = 2d$ $\alpha_{n+2} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \alpha_n, \ n \ge 0$

$$\beta_{n+2} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \beta_n, \ n \ge 0$$

Let σ be the integer function defined for every $k \ge 0$ by:

r	$\sigma(4.k+r)$
0	0
1	1
2	0
3	-1

Obviously, for every $n \ge 0$,

$$\sigma(n+2) + \sigma(n) = 0.$$

In [3] the following two assertions are formulated and proved for these two sequences.

THEOREM 1. For every natural number $n \ge 0$

$$\alpha_{n+2} = (F_{n+1} + \sigma(n-1)).a + (F_{n+1} + \sigma(n+1)).b + (F_{n+2} + \sigma(n+2)).c + (F_{n+2} + \sigma(n)).d$$

$$\beta_{n+2} = (F_{n+1} + \sigma(n+1)).a + (F_{n+1} + \sigma(n-1)).b + (F_{n+2} + \sigma(n)).c + (F_{n+2} + \sigma(n+2)).d.$$

THEOREM 2. For each natural number $n \ge 0$

$$\alpha_{n+2} = (F_{n+1} + \rho(n)).a + (F_{n+1} - \rho(n)).b + (F_{n+2} + \rho(n+1)).c + (F_{n+2} - \rho(n+1)).d$$

$$\beta_{n+2} = (F_{n+1} - \rho(n)).a + (F_{n+1} + \rho(n)).b + (F_{n+2} - \rho(n+1)).c + (F_{n+2} + \rho(n+1)).d.$$

Now, we will introduce two new schemes. The first one is:

$$\alpha_0 = 2a, \ \beta_0 = 2b, \ \alpha_1 = 2c, \ \beta_1 = 2d$$
$$\alpha_{n+2} = \beta_{n+1} + \frac{\alpha_n + \beta_n}{2}, \ n \ge 0$$
$$\beta_{n+2} = \alpha_{n+1} + \frac{\alpha_n + \beta_n}{2}, \ n \ge 0$$

,

where a, b, c, d are given constants.

If we set a = b and c = d, then sequences $\{\alpha_i\}_{i=0}^{\infty}$ and $\{\beta_i\}_{i=0}^{\infty}$ will coincide with each other and with the sequence $\{F_i\}_{i=0}^{\infty}$, which is called a generalized Fibonacci sequence, where

$$F_0(a, c) = a,$$

 $F_1(a, c) = c,$
 $F_{n+2}(a, c) = F_{n+1}(a, c) + F_n(a, c)$

Let $F_i = F_i(0,1)$; $\{F_i\}_{i=0}^{\infty}$ be the ordinary Fibonacci sequence.

The first 10 members of the first of the new schemes have the form shown on Table 1.

Table 1

	$lpha_n$	eta_n
0	2a	2b
1	2c	2d
2	a+b+2d	a+b+2c
3		a+b+c+3d
4	2a + 2b + 2c + 4d	2a + 2b + 4c + 2d

THEOREM 3. For every natural number $n \ge 0$

$$\alpha_{n+2} = F_{n+1}.a + F_{n+1}.b + (F_{n+2} + (-1)^{n+1}).c + (F_{n+2} + (-1)^n).d$$

$$\beta_{n+2} = F_{n+1}.a + F_{n+1}.b + (F_{n+2} + (-1)^n).c + (F_{n+2} + (-1)^{n+1}).d$$

The proof of this assertion can be made, for example, by induction.

For n = 0 we see the validity of the two formulas from Table 1. Let us assume that these formulas are valid for some natural number $n \ge 0$. Then, having in mond that for every natural number $n \ge 0$

$$(-1)^n + (-1)^{n+1} = 0,$$

we obtain

$$\begin{aligned} \alpha_{n+3} &= \beta_{n+2} + \frac{\alpha_{n+1} + \beta_{n+1}}{2} \\ &= F_{n+1}.a + F_{n+1}.b + (F_{n+2} + (-1)^n).c + (F_{n+2} + (-1)^{n+1}).d \\ &+ \frac{1}{2}.(F_{n}.a + F_{n}.b + (F_{n+1} + (-1)^n).c + (F_n + (-1)^{n-1}).d \\ &+ F_{n}.a + F_{n}.b + (F_{n+1} + (-1)^{n-1}).c + (F_{n+1} + (-1)^n).d)) \\ &= F_{n+1}.a + F_{n+1}.b + (F_{n+2} + (-1)^n).c + (F_{n+2} + (-1)^{n+1}).d \\ &+ F_{n}.a + F_{n}.b + F_{n+1}.c + F_{n}.d \\ &= F_{n+2}.a + F_{n+2}.b + (F_{n+3} + (-1)^n).c + (F_{n+3} + (-1)^{n+1}).d. \end{aligned}$$

The formula for β_{n+3} may be checked in similar manner. The second new sequence has the form:

$$\alpha_0 = 2a, \ \beta_0 = 2b, \ \alpha_1 = 2c, \ \beta_1 = 2d$$
$$\alpha_{n+2} = \alpha_{n+1} + \frac{\alpha_n + \beta_n}{2}, \ n \ge 0$$
$$\beta_{n+2} = \beta_{n+1} + \frac{\alpha_n + \beta_n}{2}, \ n \ge 0$$

,

where a, b, c, d are given constants.

The first 10 members of the second of the new schemes have the form shown on Table 2.

Table	2
-------	---

	α_n	β_n
0	2a	2b
1	2c	2d
2	a+b+2c	a+b+2d
3	a+b+3c+d	a+b+c+3d
4	2a + 2b + 4c + 2d	2a + 2b + 2c + 4d
5	3a + 3b + 6c + 4d	3a + 3b + 4c + 6d
6	5a + 5b + 9c + 7d	5a + 5b + 7c + 9d
7	8a + 8b + 14c + 12d	8a + 8b + 12c + 14d
8	13a + 13b + 22c + 20d	13a + 13b + 20c + 22d
9	21a + 21b + 35c + 33d	21a + 21b + 33c + 35d

THEOREM 4. For each natural number $n \ge 0$

$$\alpha_{n+2} = F_{n+1}.a + F_{n+1}.b + (F_{n+2} + 1).c + (F_{n+2} - 1).d$$
$$\beta_{n+2} = F_{n+1}.a + F_{n+1}.b + (F_{n+2} - 1).c + (F_{n+2} + 1).d.$$

For n = 0 we see the validity of the two formulas from Table 2. Let us assume that these formulas are valid for some natural number $n \ge 0$. We shall check the validity of the second formula for n + 1.

$$\begin{split} \beta_{n+3} &= \beta_{n+2} + \frac{\alpha_{n+1} + \beta_{n+1}}{2} \\ &= F_{n+1}.a + F_{n+1}.b + (F_{n+2} - 1).c + (F_{n+2} + 1).d \\ &+ \frac{1}{2}(F_{n}.a + F_{n}.b + (F_{n+1} + 1).c + (F_{n+1} - 1).d \\ &(F_{n}.a + F_{n}.b + (F_{n+1} - 1).c + (F_{n+1} + 1).d) \\ &= F_{n+1}.a + F_{n+1}.b + (F_{n+2} - 1).c + (F_{n+2} + 1).d \\ &+ F_{n}.a + F_{n}.b + F_{n+1}c + F_{n+1}.d \\ &= F_{n+1}.a + F_{n+1}.b + (F_{n+3} - 1).c + (F_{n+3} + 1).d. \end{split}$$

The formula for α_{n+3} may be checked in similar manner.

2. A digital arithmetic function will be described, following [1, 7]. Let

$$n = \sum_{i=1}^{k} a_i \cdot 10^{k-i} \equiv \overline{a_1 a_2 \dots a_k},$$

where a_i is a natural number and $0 \le a_i \le 9$ $(1 \le i \le k)$. Let for $n = 0 : \varphi(n) = 0$ and for n > 0:

$$\varphi(n) = \sum_{i=1}^{k} a_i.$$

We shall use the decimal count system everywhere hereafter.

Let us define a sequence of functions $\varphi_0, \varphi_1, \varphi_2, ...,$ where (*l* is a natural number)

$$\varphi_0(n) = n,$$

$$\varphi_{l+1} = \varphi(\varphi_l(n)).$$

Obviously, for every $l \in \mathcal{N}$: $\varphi_l : \mathcal{N} \to \mathcal{N}$. Since for k > 1

$$\varphi(n) = \sum_{i=1}^{k} a_i < \sum_{i=1}^{k} a_i \cdot 10^{k-i} = n.$$

Then for every $n \in \mathcal{N}, l \in \mathcal{N}$ will exist so that

$$\varphi_l(n) = \varphi_{l+1}(n) \in \Delta \equiv \{0, 1, 2, ..., 9\}$$

Let function ψ be defined by

$$\psi(n) = \varphi_l(n),$$

where

$$\varphi_{l+1}(n) = \varphi_l(n).$$

Let be given the sequence $a_1, a_2, ...,$ with its members being natural numbers and let

$$c_i = \psi(a_i) \ (i = 1, 2, ...).$$

Hence, we deduce the sequence $c_1, c_2, ...$ from the former sequence. If k and l exist so that $l \ge 0$,

$$c_{i+l} = c_{k+i+l} = c_{2k+i+l} = \dots$$

for $1 \le i \le k$, then we, following [1], shall say that $[c_{l+1}, c_{l+2}, ..., c_{l+k}]$ is *base* of the sequence $a_1, a_2, ...$ with length of k and with respect to function ψ .

On Tables 3 and 4 we shall show that the two new sequences have bases with lenght 24.

Table 3

	$\psi(\alpha_n) = \psi(\bullet)$	$\psi(\beta_n) = \psi(\bullet)$
0	2a	2b
1		2d
2	a+b+2d	a+b+2c
3	a+b+2d $a+b+3c+d$	a+b+c+3d

4	2a + 2b + 2c + 4d	2a + 2b + 4c + 2d
5	3a + 3b + 6c + 4d	3a + 3b + 4c + 6d
6	5a + 5b + 7c	5a + 5b + 7d
7	8a + 8b + 5c + 3d	8a + 8b + 3c + 5d
8	4a + 4b + 2c + 4d	4a + 4b + 4c + 2d
9	3a + 3b + 8c + 6d	3a + 3b + 6c + 8d
10	7a + 7b + 2d	7a + 7b + 2c
11	a+b+7d	a+b+7c
12	8a + 8b + 8c + d	8a + 8b + c + 8d
13	7d	7c
14	8a + 8b + 7c	8a + 8b + 7d
15	8a + 8b + 8c + 6d	8a + 8b + 6c + 8d
16	7a + 7b + 5c + 7d	7a + 7b + 7c + 5d
17	6a + 6b + 5c + 3d	6a + 6b + 3c + 5d
18	4a + 4b + +2d	4a + 4b + 2c
19	a+b+6c+4d	a+b+4c+6d
20	5a + 5b + 5c + 7d	5a + 5b + 7c + 5d
21	6a + 6b + 3c + d	6a + 6b + c + 3d
22	2a + 2b + 7c	2a + 2b + +7d
23	8a + 8b + 2c	8a + 8b + 2d
24	a+b+8c+d	a+b+c+8d
25	2c	2d

Table 4

	$\psi(\alpha_n) = \psi(\bullet)$	$\psi(\beta_n) = \psi(\bullet)$
0	2a	2b
1	2c	2d
2	a+b+2c	a+b+2d
3	a+b+3c+d	a+b+c+3d
4	2a + 2b + 4c + 2d	2a + 2b + 2c + 4d
5	3a + 3b + 6c + 4d	3a + 3b + 4c + 6d
6	5a + 5b + 7d	5a + 5b + 7c
7	8a + 8b + 5c + 3d	8a + 8b + 3c + 5d
8	4a + 4b + 4c + 2d	4a + 4b + 2c + 4d
9	3a + 3b + 8c + 6d	3a + 3b + 6c + 8d
10	7a + 7b + 2c	7a + 7b + 2d
11	a+b+7d	a+b+7c

12	8a + 8b + c + 8d	8a + 8b + 8c + d
13	7d	7c
14	8a + 8b + 7d	8a + 8b + 7c
15	8a + 8b + 8c + 6d	8a + 8b + 6c + 8d
16	7a + 7b + 7c + 5d	7a + 7b + 5c + 7d
17	6a + 6b + 5c + 3d	6a + 6b + 3c + 5d
18	4a + 4b + 2c	4a + 4b + 2d
19	a+b+6c+4d	a+b+4c+6d
20	5a + 5b + 7c + 5d	5a + 5b + 5c + 7d
21	6a + 6b + 3c + d	6a + 6b + c + 3d
22	2a + 2b + 7d	2a+2b+7c
23	8a + 8b + 2c	8a + 8b + 2d
24	a+b+c+8d	a+b+8c+d
25	2c	2d

References

- [1] Atanassov, K. An arithmetic function and some of its applications. Bull. of Number Theory and Related Topics, Vol. IX (1985), No. 1, 18-27.
- [2] Atanassov K., On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 24 (1986), No. 4, 362-365.
- [3] Atanassov, K., Combined 2-Fibonacci sequences, Notes on Number Theory and Discrete Mathematics, Vol. 16, 2010, No. 1, 24-28.
- [4] Atanassov K., L. Atanassova, D. Sasselov, A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 23 (1985), No. 1, 21-28.
- [5] Atanassov K., V. Atanassova, A. Shannon, J. Turner, New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey, 2002.
- [6] Lee J.-Z., J.-S. Lee, Some properties of the generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 25 (1987) No. 2, 111-117.
- [7] Shannon A., R. Melham, Carlitz generalizations of Lucas and Lehmer sequences, The Fibonacci Quartarly, Vol. 31 (1993), No. 2, 105-111.