Ahmet Tekcan and Ecem Akgüç
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 1, Pages 113–126
DOI: 10.7546/nntdm.2025.31.1.113-126
Full paper (PDF, 232 Kb)
Details
Authors and affiliations
Ahmet Tekcan
Department of Mathematics, Faculty of Science, Bursa Uludag University, Bursa, Türkiye
Ecem Akgüç
Department of Mathematics, Faculty of Science, Bursa Uludag University, Bursa, Türkiye
Abstract
In this work, we determined the general terms of almost neo cobalancing numbers, almost Lucas-neo cobalancing numbers and almost neo cobalancers in terms of cobalancing and Lucas-cobalancing numbers. We also deduced some results on relationship with Pell, Pell–Lucas, triangular and square triangular numbers. Further we formulate the sum of first terms of these numbers.
Keywords
- Balancing numbers
- Cobalancing numbers
- Neo cobalancing numbers
- Pell equations
- Triangular numbers
- Square triangular numbers
- Set of representations
- Pell numbers
2020 Mathematics Subject Classification
- 11B37
- 11B39
- 11D09
- 11D79
References
- Barbeau, E. J. (2003). Pell’s Equation. Springer-Verlag, New York.
- Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. The Fibonacci Quarterly, 37(2), 98–105.
- Chailangka, N., & Pakapongpun, A. (2021). Neo balancing numbers. International Journal of Mathematics and Computer Science, 16(4), 1653–1664.
- Dash, K. K., Ota, R. S., & Dash, S. (2012). t-Balancing numbers. International Journal of Contemporary Mathematical Sciences, 7(41), 1999–2012.
- Flath, D. E. (1989). Introduction to Number Theory. Wiley.
- Gözeri, G. K., Özkoç, A. & Tekcan, A. (2017). Some algebraic relations on balancing numbers. Utilitas Mathematica, 103, 217–236.
- Jacobson, M., & Williams, K. (2009). Solving the Pell Equation. CMS Books in
Mathematics. Springer Science, Business Media, LLC. - Kovacs, T., Liptai, K., & Olajos, P. (2010). On (a, b)-balancing numbers. Publicationes Mathematicae Debrecen, 77(3-4), 485–498.
- Liptai, K. (2004). Fibonacci balancing numbers. The Fibonacci Quarterly, 42 (4), 330–340.
- Liptai, K. (2006). Lucas Balancing numbers. Acta Mathematica Universitatis Ostraviensis, 14, 43–47.
- Liptai, K., Luca, F., Pinter, A. & Szalay, L. (2009). Generalized balancing numbers. Indagationes Mathematicae, 20(1), 87–100.
- Olajos, P. (2010). Properties of balancing, cobalancing and generalized balancing numbers. Annales Mathematicae et Informaticae, 37, 125–138.
- Panda, A. K. (2017). Some variants of the balancing sequences. Ph.D. thesis, National Institute of Technology Rourkela, India.
- Panda, G. K., Komatsu, T., & Davala, R. K. (2018). Reciprocal sums of sequences involving balancing and Lucas-balancing numbers. Mathematical Reports, 20(70), 201–214.
- Panda, G. K., & Panda, A. K. (2015). Almost balancing numbers. Journal of the Indian Mathematical Society, 82(3–4), 147–156.
- Panda, G. K., & Ray, P. K. (2005). Cobalancing numbers and cobalancers. International Journal of Mathematics and Mathematical Sciences, 8, 1189–1200.
- Panda, G. K., & Ray, P. K. (2011). Some links of balancing and cobalancing numbers with Pell and associated Pell numbers. Bulletin of the Institute of Mathematics, Academia Sinica, 6(1), 41–72.
- Ray, P. K. (2009). Balancing and cobalancing numbers. Ph.D. thesis, Department of Mathematics, National Institute of Technology, Rourkela, India.
- Ray, P. K. (2015). Balancing and Lucas-balancing sums by matrix methods. Mathematical Reports, 17(67), 225–233.
- Santana, S. F., & Diaz Barrero, J. L. (2006). Some properties of sums involving Pell numbers. Missouri Journal of Mathematical Science, 18(1), 33–40.
- Szalay, L. (2007). On the resolution of simultaneous Pell equations. Annales Mathematicae et Informaticae, 34, 77–87.
- Tekcan, A. (2019). Almost balancing, triangular and square triangular numbers. Notes on Number Theory and Discrete Mathematics, 25(1), 108–121.
- Tekcan, A. (2019). Sums and spectral norms of all Almost balancing numbers. Creative Mathematics and Informatics, 28(2), 203–214.
- Tekcan, A. Almost neo balancing numbers. Submitted.
- Tekcan, A., & Aydın, S. (2021). On t-balancers, t-balancing numbers and Lucas t-balancing numbers. Libertas Mathematica, 41(1), 37–51.
- Tekcan, A., & Erdem, A. (2020). t-Cobalancing numbers and t-cobalancers. Notes on Number Theory and Discrete Mathematics, 26(1), 45–58.
- Tekcan, A., & Yıldız, M. (2021). Balcobalancing numbers and balcobalancers. Creative Mathematics and Informatics, 30(2), 203–222.
- Tekcan, A., & Yıldız, M. (2022). Balcobalancing numbers and balcobalancers II. Creative Mathematics and Informatics, 31(2), 247–258.
- Tekcan, A., & Yıldız, M. Neo cobalancing numbers. Submitted.
- Tengely, S. (2013). Balancing numbers which are products of consecutive integers. Publicationes Mathematicae Debrecen, 83(1–2), 197–205.
Manuscript history
- Received: 24 June 2024
- Revised: 9 April 2025
- Accepted: 12 April 2025
- Online First: 14 April 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Tekcan, A. (2019). Almost balancing, triangular and square triangular numbers. Notes on Number Theory and Discrete Mathematics, 25(1), 108–121.
- Tekcan, A., & Erdem, A. (2020). t-Cobalancing numbers and t-cobalancers. Notes on Number Theory and Discrete Mathematics, 26(1), 45–58.
Cite this paper
Tekcan, A., & Akgüç, E. (2025). Almost neo cobalancing numbers. Notes on Number Theory and Discrete Mathematics, 31(1), 113-126, DOI: 10.7546/nntdm.2025.31.1.113-126.