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Abstract: In this work, we determined the general terms of almost neo cobalancing numbers,
almost Lucas-neo cobalancing numbers and almost neo cobalancers in terms of cobalancing and
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1 Introduction

A positive integer B is called a balancing number [2] if the Diophantine equation

1 + 2 + · · ·+ (B − 1) = (B + 1) + (B + 2) + · · ·+ (B +R) (1.1)

holds for some R ∈ Z+ which is called balancer. A positive integer b is called a cobalancing
number [16] if the Diophantine equation

1 + 2 + · · ·+ b = (b+ 1) + (b+ 2) + · · ·+ (b+ r) (1.2)

holds for some r ∈ Z+ which is called cobalancer.
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Let Bn denote the n-th balancing number and let bn denote the n-th cobalancing number.
Then from (1.1), Bn is a balancing number if and only if 8B2

n + 1 is a perfect square and
from (1.2), bn is a cobalancing number if and only if 8b2n + 8bn + 1 is a perfect square. Thus
Cn =

√
8B2

n + 1 and cn =
√

8b2n + 8bn + 1 are integers which are called Lucas-balancing
number and Lucas-cobalancing number, respectively. It is clear from (1.1) and (1.2) that every
balancing number is a cobalancer and every cobalancing number is a balancer, that is, Bn = rn+1

and Rn = bn for n ≥ 1, where Rn is the n-th balancer and rn is the n-th cobalancer.
Ray proved in his PhD thesis [18] that

Bn =
α2n − β2n

4
√
2

, bn =
α2n−1 − β2n−1

4
√
2

− 1

2
, Cn =

α2n + β2n

2
and cn =

α2n−1 + β2n−1

2

for n ≥ 1, where α = 1 +
√
2 and β = 1−

√
2 which are the roots of the characteristic equation

of both Pell Pn and Pell–Lucas Qn numbers (see also [12, 17]).
Balancing numbers and their generalisations are studied by many mathematicians nowadays

(see [4, 8–11, 13–15, 19, 21–23, 25–28, 30]). Recently Chailangka and Pakapongpun [3] defined
neo balancing numbers. They said that a positive integer n is called a neo balancing number if
the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n− 1) + (n− 0) + (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some r ∈ Z+, which is called neo balancer. In [29], Tekcan and Yıldız said that a
positive integer n is called a neo cobalancing number if the Diophantine equation

1 + 2 + · · ·+ n = (n− 1) + (n− 0) + (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some r ∈ Z+, which is called neo cobalancer. In [24], Tekcan defined almost neo
balancing numbers. He said that a positive integer n is called an almost neo balancing number if
the Diophantine equation

|(n− 1) + (n− 0) + (n+ 1) + (n+ 2) + · · ·+ (n+ r)− [1 + 2 + · · ·+ (n− 1)]| = 1

holds for some r ∈ Z+ which is called almost neo balancer.

2 Almost neo cobalancing numbers

In this section, we first define almost neo cobalancing numbers, almost Lucas-neo cobalancing
numbers and almost neo cobalancers and then try to determine the general terms of them in terms
of cobalancing and Lucas-cobalancing numbers.

A positive integer n is called an almost neo cobalancing number if the Diophantine equation

|(n− 1) + (n− 0) + (n+ 1) + (n+ 2) + · · ·+ (n+ r)− (1 + 2 + · · ·+ n)| = 1 (2.1)

holds for some r ∈ Z+, which is called almost neo cobalancer. From (2.1), we have two cases:

Case 1. If (n − 1) + (n − 0) + (n + 1) + (n + 2) + · · · + (n + r) − (1 + 2 + · · · + n) = 1,
then n is called an almost neo cobalancing number of first type, r is called an almost neo
cobalancer of first type and hence
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r =
−2n− 1 +

√
8n2 − 8n+ 17

2
. (2.2)

Let bneo∗n denote the almost neo cobalancing number of first type. Then from (2.2), bneo∗n

is an almost neo cobalancing number of first type if and only if 8(bneo∗n )2 − 8bneo∗n + 17

is a perfect square. Thus

cneo∗n =
√

8(bneo∗n )2 − 8bneo∗n + 17 (2.3)

is an integer which is called the almost Lucas-neo cobalancing number of first type. We
denote the almost neo cobalancer of first type by rneo∗n .

Case 2. If (n − 1) + (n − 0) + (n + 1) + (n + 2) + · · · + (n + r) − (1 + 2 + · · · + n) = −1,
then n is called an almost neo cobalancing number of second type, r is called an almost
neo cobalancer of second type and hence

r =
−2n− 1 +

√
8n2 − 8n+ 1

2
. (2.4)

Let bneo∗∗n denote the almost neo cobalancing number of second type. Then from
(2.4), bneo∗∗n is an almost neo cobalancing number of second type if and only if
8(bneo∗∗n )2 − 8bneo∗∗n + 1 is a perfect square. Thus

cneo∗∗n =
√
8(bneo∗∗n )2 − 8bneo∗∗n + 1 (2.5)

is an integer which is called the almost Lucas-neo cobalancing number of second type.
We denote the almost neo cobalancer of second type by rneo∗∗n .

2.1 Almost neo cobalancing numbers of first type

From (2.3), we see that bneo∗n is an almost neo cobalancing number of first type if and only if
8(bneo∗n )2 − 8bneo∗n + 17 is a perfect square. So we set

8(bneo∗n )2 − 8bneo∗n + 17 = y2

for some y ∈ Z+. Then 2[4(bneo∗n )2 − 4bneo∗n ] + 17 = y2 and hence 2(2bneo∗n − 1)2 + 15 = y2.

Taking x = 2bneo∗n − 1, we get the Pell equation (see [1, 7])

2x2 − y2 = −15. (2.6)

Let Ω∗ = {(x, y) : 2x2 − y2 = −15}. Then we can give the following theorem.

Theorem 2.1. Ω∗ = {}.

Proof. For the Pell equation in (2.6), the indefinite form is F = (a, b, c) = (2, 0,−1) of
discriminant ∆ = 8. So τ = 3 + 2

√
2. Therefore for m = −15, we get

U =
∣∣∣amτ

∆

∣∣∣ 12 (1 + 1

τ
) =

∣∣∣∣∣(2)(−15)(3 + 2
√
2)

8

∣∣∣∣∣
1
2

(1 +
1

3 + 2
√
2
) ≃ 5.477.

But in the range 0 ≤ y ≤ 5, ∆y2 + 4am = 8y2 − 120 is not a perfect square (see [5, p. 121]).
So there are no integer solutions, that is, Ω∗ = {}.
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From Theorem 2.1, we get the next theorem.

Theorem 2.2. There are no almost neo cobalancing numbers, almost Lucas-neo cobalancing
numbers and almost neo cobalancers of first type.

Proof. Note that Ω∗ = {}. Since x = 2bneo∗n − 1, there is no integer

bneo∗n =
x+ 1

2
.

So from (2.3), there is no integer

cneo∗n =
√

8(bneo∗n )2 − 8bneo∗n + 17

and from (2.2), there is no integer

rneo∗n =
−2bneo∗n − 1 + cneo∗n

2
.

Therefore, there are no almost neo cobalancing numbers, almost Lucas-neo cobalancing numbers
and almost neo cobalancers of first type.

2.2 Almost neo cobalancing numbers of second type

From (2.5), we note that bneo∗∗n is an almost neo cobalancing number of second type if and only if
8(bneo∗∗n )2 −8bneo∗∗n + 1 is a perfect square. So we set

8(bneo∗∗n )2 − 8bneo∗∗n + 1 = y2

for some y ∈ Z+. Then 2[4(bneo∗∗n )2 − 4bneo∗∗n ] + 1 = y2 and hence 2(2bneo∗∗n − 1)2 − 1 = y2.

Taking x = 2bneo∗∗n − 1, we get the Pell equation

2x2 − y2 = 1. (2.7)

Let Ω∗∗ = {(x, y) : 2x2 − y2 = 1}. Then we can give the following theorem.

Theorem 2.3. Ω∗∗ = {(2bn + 1, cn) : n ≥ 1}.

Proof. For the Pell equation in (2.7), the indefinite form is F = (2, 0,−1). The set of represent-

atives is Rep = {[±1 1]} and M =

[
3 4

2 3

]
. Here we notice that [xn yn] = [1 1]Mn−1 for

n ≥ 1. Since the n-th power of M is Mn =

[
Cn 4Bn

2Bn Cn

]
, we get

[xn yn] = [1 1]Mn−1 = [2Bn−1 + Cn−1 4Bn−1 + Cn−1].

Thus Ω∗∗ = {(2Bn−1+Cn−1, 4Bn−1+Cn−1) : n ≥ 1}. It can be easily seen that 2Bn−1+Cn−1 =

2bn + 1 and 4Bn−1 + Cn−1 = cn. Consequently, Ω∗∗ = {(2bn + 1, cn) : n ≥ 1}.

From Theorem 2.3, we deduce that:
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Theorem 2.4. The general terms of almost neo cobalancing numbers, almost Lucas-neo
cobalancing numbers and almost neo cobalancers of second type are

bneo∗∗n = bn + 1, cneo∗∗n = cn and rneo∗∗n =
−2bn + cn − 3

2

for n ≥ 1.

Proof. Note that Ω∗∗ = {(2bn + 1, cn) : n ≥ 1} by Theorem 2.3. Since x = 2bneo∗∗n − 1, we get

bneo∗∗n =
xn + 1

2
=

2bn + 1 + 1

2
= bn + 1

for n ≥ 1. Thus from (2.5), we obtain

cneo∗∗n =
√
8(bneo∗∗n )2 − 8bneo∗∗n + 1

=
√

8(bn + 1)2 − 8(bn + 1) + 1

=
√

8b2n + 8bn + 1

= cn

for n ≥ 1, and from (2.4), we get

rneo∗∗n =
−2bneo∗∗n − 1 + cneo∗∗n

2
=

−2bn + cn − 3

2

for n ≥ 1.

Here we note that almost neo cobalancing numbers of second type must be positive form
definition. But for n = 0, 8(0)2 − 8(0) + 1 = 12 is a perfect square. So we can accept 0 to be an
almost neo cobalancing numbers of second type, that is, bneo∗∗0 = 0 just like 0 and 1 accepted to
be balancing numbers by [2]. Thus from (2.4), rneo∗∗0 = 0 and from (2.5), cneo∗∗0 = 1.

Theorem 2.5. Binet formulas for almost neo cobalancing numbers, almost Lucas-neo cobalancing
numbers and almost neo cobalancers of second type are

bneo∗∗n =
α2n−1 − β2n−1

4
√
2

+
1

2

cneo∗∗n =
α2n−1 + β2n−1

2

rneo∗∗n =
α2n−2 − β2n−2

4
√
2

− 1

for n ≥ 1. The recurrence relations are

bneo∗∗n+1 = 6bneo∗∗n − bneo∗∗n−1 − 2

cneo∗∗n+1 = 6cneo∗∗n − cneo∗∗n−1

rneo∗∗n+1 = 6rneo∗∗n − rneo∗∗n−1 + 4

for n ≥ 2.

Proof. It can be easily derived from Theorem 2.4.
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In Theorem 2.4, we deduced the general terms of almost neo cobalancing numbers, almost
Lucas-neo cobalancing numbers and almost neo cobalancers of second type in terms of
cobalancing and Lucas-cobalancing numbers. Conversely, we can give the general terms of
balancing, cobalancing, Lucas-balancing and Lucas-cobalancing numbers in terms of almost neo
cobalancing numbers and almost Lucas-neo cobalancing numbers of second type as follows.

Theorem 2.6. The general terms of balancing, cobalancing, Lucas-balancing and Lucas-
cobalancing numbers are

Bn =
2bneo∗∗n + cneo∗∗n − 1

2
, bn = bneo∗∗n − 1, Cn = 4bneo∗∗n + cneo∗∗n − 2 and cn = cneo∗∗n

for n ≥ 1.

Proof. Applying Theorem 2.5, we get

Bn =
α2n − β2n

4
√
2

=
α2n−1(1 +

√
2)− β2n−1(1−

√
2)

4
√
2

=
α2n−1( 1

2
√
2
+ 1

2
)− β2n−1( 1

2
√
2
− 1

2
)

2

=
2
(

α2n−1−β2n−1

4
√
2

+ 1
2

)
+
(

α2n−1+β2n−1

2

)
− 1

2

=
2bneo∗∗n + cneo∗∗n − 1

2
.

The others can be proved similarly.

3 Sums of almost neo cobalancing numbers of second type

Theorem 3.1. The sum of first the n terms of almost neo cobalancing numbers, almost Lucas-neo
cobalancing numbers and almost neo cobalancers of second type are

n∑
i=1

bneo∗∗i =
bneo∗∗n+1 − bneo∗∗n + 2n

4

n∑
i=1

cneo∗∗i =
cneo∗∗n+1 − cneo∗∗n − 2

4

n∑
i=1

rneo∗∗i =
rneo∗∗n+1 − rneo∗∗n − 4n− 1

4

for n ≥ 1.

Proof. Recall that bneo∗∗n+1 = 6bneo∗∗n − bneo∗∗n−1 − 2 by Theorem 2.5. So

bneo∗∗n+1 − bneo∗∗n = 5bneo∗∗n − bneo∗∗n−1 − 2

and hence
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bneo∗∗2 − bneo∗∗1 = 5bneo∗∗1 − bneo∗∗0 − 2

bneo∗∗3 − bneo∗∗2 = 5bneo∗∗2 − bneo∗∗1 − 2

bneo∗∗4 − bneo∗∗3 = 5bneo∗∗3 − bneo∗∗2 − 2 (3.1)
...

bneo∗∗n+1 − bneo∗∗n = 5bneo∗∗n − bneo∗∗n−1 − 2.

If we sum both sides of (3.1), then we obtain

bneo∗∗n+1 − bneo∗∗1 = 5(bneo∗∗1 + bneo∗∗2 + · · ·+ bneo∗∗n )− (bneo∗∗0 + bneo∗∗1 + · · ·+ bneo∗∗n−1 )− 2n.

Since bneo∗∗0 = bneo∗∗1 = 1, we get

bneo∗∗n+1 = 5(bneo∗∗1 + bneo∗∗2 + · · ·+ bneo∗∗n )− (bneo∗∗1 + · · ·+ bneo∗∗n−1 + bneo∗∗n ) + bneo∗∗n − 2n

and hence
bneo∗∗n+1 = 4(bneo∗∗1 + bneo∗∗2 + · · ·+ bneo∗∗n ) + bneo∗∗n − 2n.

Thus
bneo∗∗1 + bneo∗∗2 + · · ·+ bneo∗∗n =

bneo∗∗n+1 − bneo∗∗n + 2n

4
.

The others can be proved similarly.

For the sums of Pell numbers, it is proved in [20, Lemma 1] that
4n+1∑
i=1

Pi =

[
n∑

i=0

(
2n+ 1

2i

)
2i

]2
.

Similarly we can give the following result.

Theorem 3.2. The sum of the first 4n+ 1 nonzero terms of Pell numbers is
4n+1∑
i=1

Pi = (−8bneo∗∗n+2 + 3cneo∗∗n+2 + 4)2.

Proof. Note that
n∑

i=1

Pi =
Pn+1+Pn−1

2
and Pn = αn−βn

2
√
2

. So we get

4n+1∑
i=1

Pi =
P4n+2 + P4n+1 − 1

2

=

α4n+2−β4n+2

2
√
2

+ α4n+1−β4n+1

2
√
2

− 1

2

=

α4n+2(1+α−1)+β4n+2(−1−β−1)

2
√
2

2
− 1

2

=
α4n+2 + β4n+2 − 2

4

=

(
α2n+1 + β2n+1

2

)2

=

[
α2n+3(

−2√
2
+

3

2
) + β2n+3(

2√
2
+

3

2
)

]2
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=

[
−8

(
α2n+3 − β2n+3

4
√
2

+
1

2

)
+ 3

(
α2n+3 + β2n+3

2

)
+ 4

]2
= (−8bneo∗∗n+2 + 3cneo∗∗n+2 + 4)2

by Theorem 2.5.

Apart from Theorem 3.2, we can also give the following theorem which can be proved
similarly.

Theorem 3.3. For the sums of Pell, Pell–Lucas, balancing and Lucas-cobalancing numbers, we
have

1 +
4n−1∑
i=1

Pi = (4bneo∗∗n+1 − cneo∗∗n+1 − 2)2,

2n∑
i=1

Q2i−1 = (−4bneo∗∗n+1 + 2cneo∗∗n+1 + 2)2,

2n∑
i=0

Q2i+1

2
= (−8bneo∗∗n+2 + 3cneo∗∗n+2 + 4)2,

2n∑
i=1

B2i−1 = (
−2bneo∗∗2n+1 + cneo∗∗2n+1 + 1

2
)2,

1 +
4n+2∑
i=1

ci = (4bneo∗∗2n+2 − cneo∗∗2n+2 − 2)2.

Panda and Ray proved in [17, Theorem 3.4] that

2n−1∑
i=1

Pi = Bn + bn. (3.2)

Later Gözeri, Özkoç and Tekcan proved in [6, Theorem 2.5] that

2n−1∑
i=0

Qi = Cn + cn.

Since Rn = bn, (3.2) becomes
2n−1∑
i=1

Pi = Bn +Rn. (3.3)

As in (3.3), we can give the following result.

Theorem 3.4. The sum of the first 2n− 2 Pell numbers is

2n−2∑
i=1

Pi = bneo∗∗n + rneo∗∗n .
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Proof. Since
n∑

i=1

Pi =
Pn+1+Pn−1

2
and Pn = αn−βn

2
√
2

, we observe that

2n−2∑
i=1

Pi =
P2n−1 + P2n−2 − 1

2

=

α2n−1−β2n−1

2
√
2

+ α2n−2−β2n−2

2
√
2

− 1

2

=
α2n−1 − β2n−1

4
√
2

+
α2n−2 − β2n−2

4
√
2

− 1

2

=

(
α2n−1 − β2n−1

4
√
2

+
1

2

)
+

(
α2n−2 − β2n−2

4
√
2

− 1

)
= bneo∗∗n + rneo∗∗n

by Theorem 2.5.

4 Relationship with Pell and Pell–Lucas numbers

We can give the general terms of almost neo cobalancing numbers, almost Lucas-neo cobalancing
numbers and almost neo cobalancers of second type in terms of Pell numbers as follows.

Theorem 4.1. The general terms of almost neo cobalancing numbers, almost Lucas-neo
cobalancing numbers and almost neo cobalancers of second type are

bneo∗∗n =
P2n−1 + 1

2
, cneo∗∗n = P2n−1 + P2n−2 and rneo∗∗n =

P2n−2 − 2

2

for n ≥ 1.

Proof. Recall that bneo∗∗n = α2n−1−β2n−1

4
√
2

+ 1
2

by Theorem 2.5. So we get

bneo∗∗n =
α2n−1 − β2n−1

4
√
2

+
1

2
=

α2n−1−β2n−1

2
√
2

+ 1

2
=

P2n−1 + 1

2
.

The others are similar.

Conversely, we can give the general terms of the even and odd ordered Pell numbers in terms
of almost neo cobalancing numbers and almost Lucas-neo cobalancing numbers of second type
as follows.

Theorem 4.2. The general terms of the even and odd ordered Pell numbers are

P2n = −2bneo∗∗n+1 + cneo∗∗n+1 + 1 and P2n−1 = 6bneo∗∗n+1 − 2cneo∗∗n+1 − 3

for n ≥ 1.
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Proof. Since Pn = αn−βn

2
√
2

, we deduce that

P2n =
α2n − β2n

2
√
2

=
α2n+1(−1 +

√
2)− β2n+1(−1−

√
2)

2
√
2

= α2n+1(
−2

4
√
2
+

1

2
)− β2n+1(

−2

4
√
2
− 1

2
)

= −2

(
α2n+1 − β2n+1

4
√
2

+
1

2

)
+

(
α2n+1 + β2n+1

2

)
+ 1

= −2bneo∗∗n+1 + cneo∗∗n+1 + 1

by Theorem 2.5. Similarly we can prove that P2n−1 = 6bneo∗∗n+1 − 2cneo∗∗n+1 − 3.

We can also give the general terms of almost neo cobalancing numbers, almost Lucas-neo
cobalancing numbers and almost neo cobalancers of second type in terms of Pell–Lucas numbers
as follows.

Theorem 4.3. The general terms of almost neo cobalancing numbers, almost Lucas-neo
cobalancing numbers and almost neo cobalancers of second type are

bneo∗∗n =
Q2n −Q2n−1 + 4

8
, cneo∗∗n =

Q2n−1

2
and rneo∗∗n =

−Q2n + 3Q2n−1 − 8

8

for n ≥ 1.

Proof. It can be proved similarly to Theorem 4.1.

Conversely, we can give the general terms of the even and odd ordered Pell–Lucas numbers in
terms of almost neo cobalancing numbers and almost Lucas-neo cobalancing numbers of second
type as follows.

Theorem 4.4. The general terms of the even and odd ordered Pell–Lucas numbers are

Q2n = 8bneo∗∗n+1 − 2cneo∗∗n+1 − 4 and Q2n−1 = −16bneo∗∗n+1 + 6cneo∗∗n+1 + 8

for n ≥ 1.

Proof. It can be proved similarly to Theorem 4.2 was proved.

5 Relationship with triangular and
square triangular numbers

Triangular numbers are the numbers of the form n(n+ 1)

2
and denoted by Tn. There is a

correspondence between balancing (and also cobalancing) numbers and triangular numbers.
Indeed from (1.1), we note that

(n+ r)(n+ r + 1)

2
= n2.
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So
TBn+Rn = B2

n.

Similarly from (1.2), we note that

(n+ r)(n+ r + 1)

2
= n2 + n.

So
Tbn+rn = b2n + bn. (5.1)

As in (5.1), we can give the following theorem.

Theorem 5.1. For bneo∗∗n and rneo∗∗n , we have

Tbneo∗∗
n +rneo∗∗

n
= (bneo∗∗n )2 − bneo∗∗n .

Proof. Let n be an almost neo cobalancing number of second type. Then from (2.1), n satisfies
the equation

2n− 1 + nr +
r(r + 1)

2
− n(n+ 1)

2
= −1.

If we rearrange the last equation, then we get

(n+ r)(n+ r + 1)

2
= n2 − n.

Thus,
Tbneo∗∗

n +rneo∗∗
n

= (bneo∗∗n )2 − bneo∗∗n

is obvious.

Square triangular numbers are the numbers that are both squares and triangular numbers and
are denoted by Sn, and can be written

Sn = s2n =
tn(tn + 1)

2

for some sn and tn which are the sides of the corresponding square and triangle. Binet formulas
are

Sn =
α4n + β4n − 2

32
, sn =

α2n − β2n

4
√
2

and tn =
α2n + β2n − 2

4
(5.2)

for n ≥ 1. We can deduce the general terms of almost neo cobalancing numbers, almost
Lucas-neo cobalancing numbers and almost neo cobalancers of second type in terms of sn and tn
as follows.

Theorem 5.2. The general terms of almost neo cobalancing numbers, almost Lucas-neo
cobalancing numbers and almost neo cobalancers of second type are

bneo∗∗n = sn−1 + tn−1 + 1

cneo∗∗n = 4sn−1 + 2tn−1 + 1

rneo∗∗n = sn−1 − 1

for n ≥ 1.
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Proof. Recall that bneo∗∗n = α2n−1−β2n−1

4
√
2

+ 1
2

by Theorem 2.5. Thus we get

bneo∗∗n =
α2n−1 − β2n−1

4
√
2

+
1

2

= α2n−1(
α−1

4
√
2
+

α−1

4
)− β2n−1(

β−1

4
√
2
− β−1

4
)− 1

2
+ 1

=
α2n−2 − β2n−2

4
√
2

+
α2n−2 + β2n−2 − 2

4
+ 1

= sn−1 + tn−1 + 1

by (5.2). The others are proven in a similar way.

Conversely, we can give the following theorem.

Theorem 5.3. General terms of Sn, sn and tn are

Sn =
4(bneo∗∗n+1 )2 + (cneo∗∗n+1 )2 − 4bneo∗∗n+1 cneo∗∗n+1 − 4bneo∗∗n+1 + 2cneo∗∗n+1 + 1

4

sn =
−2bneo∗∗n+1 + cneo∗∗n+1 + 1

2

tn =
4bneo∗∗n+1 − cneo∗∗n+1 − 3

2

for n ≥ 1.

Proof. Since Sn = α4n+β4n−2
32

by (5.2), we deduce that

Sn =
α4n + β4n − 2

32

=
α4n(3α

2−2
√
2α2

8
) + β4n(3β

2+2
√
2β2

8
)− 1

4

4

=

{
4(α

2n+1−β2n+1

4
√
2

− 1
2
)2 + 4(α

2n+1−β2n+1

4
√
2

− 1
2
) + (α

2n+1+β2n+1

2
)2

−4(α
2n+1−β2n+1

4
√
2

− 1
2
)(α

2n+1+β2n+1

2
)− 2(α

2n+1+β2n+1

2
) + 1

}
4

=

{
4(α

2n+1−β2n+1

4
√
2

+ 1
2
)2 + (α

2n+1+β2n+1

2
)2 − 4(α

2n+1−β2n+1

4
√
2

+ 1
2
)

×(α
2n+1+β2n+1

2
)− 4(α

2n+1−β2n+1

4
√
2

+ 1
2
) + 2(α

2n+1+β2n+1

2
) + 1

}
4

=
4(bneo∗∗n+1 )2 + (cneo∗∗n+1 )2 − 4bneo∗∗n+1 cneo∗∗n+1 − 4bneo∗∗n+1 + 2cneo∗∗n+1 + 1

4

by Theorem 2.5. The others can be proved similarly.
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