A note on a bivariate Leonardo sequence

Carlos M. da Fonseca and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 1, Pages 73–78
DOI: 10.7546/nntdm.2025.31.1.73-78
Full paper (PDF, 160 Kb)

Details

Authors and affiliations

Carlos M. da Fonseca
1 Kuwait College of Science and Technology
Doha District, Safat 13133, Kuwait

2 Chair of Computational Mathematics, University of Deusto
48007 Bilbao, Spain

Anthony G. Shannon
3 Honorary Fellow, Warrane College, University of New South Wales
Kensington NSW 2033, Australia

Abstract

Recently, quite a few generalizations of Leonardo numbers have emerged in the literature. In this short note, we propose a new bivariate extension and provide its generating function. We correct the generating function of another recently proposed bivariate generalization.

Keywords

  • Leonardo sequence
  • Generating function
  • Recurrence relations
  • Hessenberg matrices
  • Determinant

2020 Mathematics Subject Classification

  • 15A15
  • 11B39

References

  1. Atkins, J., & Geist, R. (1987). Fibonacci numbers and computer algorithms. College Mathematics Journal, 18(4), 328–336.
  2. Bednarz, U., & Wołowiec-Musiał, M. (2024). Generalized Fibonacci-Leonardo numbers. Journal of Difference Equations and Applications, 30(1), 111–121.
  3. da Fonseca, C. M. (2024). The generating function of a bi-periodic Leonardo sequence. Armenian Journal of Mathematics, 16(7), 1–8.
  4. da Fonseca, C. M. (2011). An identity between the determinant and the permanent of Hessenberg type-matrices. Czechoslovak Mathematical Journal, 61(4), 917–921.
  5. Dijkstra, E. W. (1982). Smoothsort, an alternative for sorting in situ. Science of Computer Programming, 1(3), 223–233.
  6. Getu, S. (1991). Evaluating determinants via generating functions. Mathematics Magazine, 64(1), 45–53.
  7. Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly, 3(3), 161–176.
  8. Horadam, A. F. (1965). Generating functions for powers of a certain generalized sequence of numbers. Duke Mathematical Journal, 32(3), 437–446.
  9. Horadam, A. F. (1967). Special properties of the sequence wn(a, b; p, q). The Fibonacci Quarterly, 5(5), 424–434.
  10. Inselberg, A. (1978). On determinants of Toeplitz–Hessenberg matrices arising in power series. Journal of Mathematical Analysis and Applications, 63(2), 347–353.
  11. Janjić, M. (2012). Determinants and recurrence sequences. Journal of Integer Sequences, 15, Article 12.3.5.
  12. Leerawat, U., & Daowsud, K. (2023). Determinants of some Hessenberg matrices with generating functions. Special Matrices, 11, 1–8.
  13. Mangueira, M. C. S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2022). Leonardo’s bivariate and complex polynomials. Notes on Number Theory and Discrete Mathematics, 28(1), 115–123.
  14. Merca, M. (2013). A note on the determinant of a Toeplitz–Hessenberg matrix. Special Matrices, 1, 10–16.
  15. Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97–101.
  16. Shannon, A. G., & Deveci, Ö. (2022). A note on generalized and extended Leonardo sequences. Notes on Number Theory and Discrete Mathematics, 28(1), 109–114.
  17. Shannon, A. G., & Horadam, A. F. (1971). Generating functions for powers of third order recurrence sequences. Duke Mathematical Journal, 38(4), 791–794.
  18. Shattuck, M. (2022). Combinatorial proofs of identities for the generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(4), 778–790.
  19. Vein, R., & Dale, P. (1999). Determinants and Their Applications in Mathematical Physics. Applied Mathematical Sciences, Vol. 134, Springer, New York.
  20. Verde-Star, L. (2017). Polynomial sequences generated by infinite Hessenberg matrices. Special Matrices, 5, 64–72.

Manuscript history

  • Received: 19 June 2024
  • Revised: 4 April 2025
  • Accepted: 6 April 2025
  • Online First: 7 April 2025

Copyright information

Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

da Fonseca, C. M., & Shannon, A. G. (2025). A note on a bivariate Leonardo sequence. Notes on Number Theory and Discrete Mathematics, 31(1), 73-78, DOI: 10.7546/nntdm.2025.31.1.73-78.

Comments are closed.