Vembu Ramachandran and Roopkumar Rajakumar
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 4, Pages 797–802
DOI: 10.7546/nntdm.2024.30.4.797-802
Full paper (PDF, 201 Kb)
Details
Authors and affiliations
Vembu Ramachandran
Department of Mathematics, SBK College
Aruppukottai – 626101, India
Roopkumar Rajakumar
Department of Mathematics, Central University of Tamil Nadu
Thiruvarur – 610005, India
Abstract
We present an analytic formula for Bell numbers through counting the number of uniform structures on a finite set.
Keywords
- Bell numbers
- Counting the partitions
- Uniform structure
2020 Mathematics Subject Classification
- 11B73
- 05A18
- 54E15
References
- Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35(2), 258–277.
- Weil, A. (1937). Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Herman, Paris.
- Willard, S. (1970). General Topology. Addison-Wesley Publishing Company Inc., Philippines.
Manuscript history
- Received: 21 September 2023
- Revised: 22 November 2024
- Accepted: 26 November 2024
- Online First: 26 November 2024
Copyright information
Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Ramachandran, V., & Rajakumar, R. (2024). An analytical formula for Bell numbers. Notes on Number Theory and Discrete Mathematics, 30(4), 797-802, DOI: 10.7546/nntdm.2024.30.4.797-802.