Çiğdem Zeynep Yılmaz and Gülsüm Yeliz Saçlı
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 2, Pages 253–270
DOI: 10.7546/nntdm.2024.30.2.253-270
Full paper (PDF, 261 Kb)
Details
Authors and affiliations
Çiğdem Zeynep Yılmaz
![]()
Department of Mathematics, Faculty of Engineering and Natural Sciences,
Istanbul Bilgi University, 34440, Istanbul, Türkiye
Gülsüm Yeliz Saçlı
![]()
Department of Computer Engineering, Faculty of Engineering and Architecture,
Istanbul Gelisim University, 34310, Istanbul, Türkiye
Abstract
In this study, we examine the Leonardo sequence with dual-generalized complex (
) coefficients for
. Firstly, we express some summation formulas related to the
Fibonacci,
Lucas, and
Leonardo sequences. Secondly, we present some order-
characteristic relations, involving d’Ocagne’s, Catalan’s, Cassini’s, and Tagiuri’s identities. The essential point of the paper is that one can reduce the calculations of the
Leonardo sequence by considering
. This generalization gives the dual-complex Leonardo sequence for
, hyper-dual Leonardo sequence for
, and dual-hyperbolic Leonardo sequence for
.
Keywords
- Binet’s formula
- Leonardo numbers
- Dual-generalized complex numbers
2020 Mathematics Subject Classification
- 11B37
- 11B39
- 11B83
References
- Akar, M., Yüce, S., & Şahin, S. (2018). On the dual hyperbolic numbers and the complex hyperbolic numbers. Journal of Computer Science and Computational Mathematics, 8(1), 1–6.
- Alp, Y., & Koc¸er, E. G. (2021). Hybrid Leonardo numbers. Chaos, Solitons & Fractals, 150, Article 111128.
- Alp, Y., & Koc¸er, E. G. (2021). Some properties of Leonardo numbers. Konuralp Journal of Mathematics, 9(1), 183–189.
- Bergum, G. E., & Hoggatt, Jr, V. E. (1975). Sums and products for recurring sequences. The Fibonacci Quarterly, 13(2), 115–120.
- Catarino, P., & Borges, A. (2020). On Leonardo numbers. Acta Mathematica Universitatis Comenianae, 89(1), 75–86.
- Catarino, P., & Borges, A. (2020). A note on incomplete Leonardo numbers. Integers, 20, A43.
- Catarino, P., Vasco, P., Borges, A., Campos, H., & Aires, A. P. (2014). Sums, products and identities involving k-Fibonacci and k-Lucas sequences. JP Journal of Algebra, Number Theory and Applications, 32(1), 63–77.
- Cheng, H. H., & Thompson, S. (1996). Dual polynomials and complex dual numbers for analysis of spatial mechanisms. Proceedings of ASME 24th Biennial Mechanisms Conference, 19–22 August 1996, Irvine, CA.
- Cheng, H. H., & Thompson, S. (1999). Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers. ASME Journal of Mechanical Design, 121(2), 200–205.
- Cohen, A., & Shoham, M. (2018). Principle of transference – An extension to hyper-dual numbers. Mechanism and Machine Theory, 125, 101–110.
- Dunlap, R. A. (1997). The Golden Ratio and Fibonacci Numbers. World Scientific
Publishing, Singapore. - Fike, J. A., & Alonso, J. J. (2011). Automatic differentiation through the use of hyper-dual numbers for second derivatives. Lecture Notes in Computational Science and Engineering book series (LNCSE), 87(201), 163–173.
- Fike, J. A., Jongsma, S., Alonso, J. J., & van der Weide, E. (2011). Optimization with gradient and hessian information calculated using hyper-dual numbers. 29th AIAA Applied Aerodynamics Conference, 27-30 June 2011, Honolulu, Hawaii.
- Fjelstad, P. (1986). Extending special relativity via the perplex numbers. American Journal of Physics, 54(5), 416–422.
- Gürses, N., Şentürk, G. Y., & Yüuce, S. (2021). A study on dual-generalized complex and hyperbolic-generalized complex numbers. Gazi University Journal of Science, 34(1), 180–194.
- Gürses, N., Şentürk, G. Y., & Yüce, S. (2022). A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers. Sigma Journal of Engineering and Natural Sciences, 40(1), 179–187.
- Harkin, A. A., & Harkin, J. B. (2004). Geometry of generalized complex numbers.
Mathematics Magazine, 77(2), 118–129. - Hoggatt, Jr, V. E. (1969). Fibonacci and Lucas Numbers. The Fibonacci Association, Santa Clara, CA.
- Işbilir, Z., Akyigit, M., & Tosun, M. (2023). Pauli–Leonardo quaternions. Notes on Number Theory and Discrete Mathematics, 29(1), 1–16.
- Kantor, I. L., & Solodovnikov, A. S. (1989). Hypercomplex Numbers. Springer-Verlag, New York.
- Karakuş, S. O., Nurkan, S. K., & Turan, M. (2022). Hyper-dual Leonardo numbers. Konuralp Journal of Mathematics, 10(2), 269–275.
- Karataş, A. (2022). On complex Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(3), 458–465.
- Karataş, A. (2023). Dual Leonardo numbers. AIMS Mathematics, 8(12), 30527–30536.
- Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications. John Wiley & Sons, New York.
- Majernik, V. (1996). Multicomponent number systems. Acta Physica Polonica A, 90(3), 491–498.
- Mangueira, M. C. dos S., Alves, F. R. V., & Catarino, P. M. M. C. (2021). Os números hıbridos de Leonardo (Leonardo’s hybrid numbers). Ciencia e Natura, 43(82), 1–20.
- Mangueira, M. C. dos S., Alves, F. R. V., & Catarino, P. M. M. C. (2021). Os biquaternions el´ıpticos de Leonardo (Leonardo’s elliptical biquaternions). Revista Eletrônica Paulista de Matemática Fonte, 21, 130—139.
- Mangueira, M. C. dos S., Alves, F. R. V., & Catarino, P. M. M. C. (2022). Hybrid quaternions of Leonardo. Trends in Computational and Applied Mathematics, 23(1), 51–62.
- Messelmi, F. (2015). Dual-complex numbers and their holomorphic functions.
hal-01114178. - Nurkan, S. K., & Güven, I. A. (2023). Ordered Leonardo quadruple numbers. Symmetry, 15, 149.
- Ozimamo ¨ glu, H. (2023). A new generalization of Leonardo hybrid numbers with ˘ q-integers. Indian Journal of Pure and Applied Mathematics, 1–10.
- Pennestri, E., & Stefanelli, R. (2007). Linear algebra and numerical algorithms using dual numbers. Multibody System Dynamics, 18(3), 323–344.
- Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97–101.
- Shannon, A. G., & Deveci, Ö. (2022). A note on generalized and extended Leonardo sequences. Notes on Number Theory and Discrete Mathematics, 28(1), 109–114.
- Shattuck, M. (2022). Combinatorial proofs of identities for the generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(4), 778–790.
- Sloane, N. The On-line Encyclopedia of Integer Sequences. Available online at: http://oeis.org/.
- Sobczyk, G. (1995). The hyperbolic number plane. The College Mathematics Journal, 26(4), 268–280.
- Soykan, Y. (2023). Special cases of generalized Leonardo numbers: Modified p-Leonardo, p-Leonardo–Lucas and p-Leonardo Numbers. Earthline Journal of Mathematical Sciences, 11(2), 317–342.
- Study, E. (1903). Geometrie der dynamen: Die zusammensetzung von kraften und verwandte gegenstande der geometrie bearb. B.G. Teubner, Leipzig.
- Şentürk, G. Y. (2022). A brief study on dual-generalized complex Leonardo numbers. 5th International Conference on Mathematical Advances and Applications (ICOMAA), 11-14 May 2022, Istanbul, Turkey, 104.
- Tan, E., & Leung, H. H. (2023). On Leonardo p-numbers. Integers, 23, A7.
- Vajda, S. (1989). Fibonacci and Lucas Numbers and the Golden Section. Theory and Applications. Ellis Horwood Limited, Chichester.
- Vieira, R. P. M., Mangueira, M. C. dos S., Alves, F. R. V., & Catarino, P. M. M. C. (2020). A forma matricial dos numeros de Leonardo. Ciencia e Natura, 42.
- Vieira, R. P. M., Mangueira, M. C. dos S., Alves, F. R. V., & Catarino, P. M. M. C.
(2021). Os numeros hiperbolicos de Leonardo (Leonardo’s hyperbolic numbers). Cadernos do IME-Serie Informatica, 113–124. - Yaglom, I. M. (1968). Complex Numbers in Geometry. Academic Press, New York.
- Yaglom, I. M. (1979). A Simple Non-Euclidean Geometry and Its Physical Basis. Springer-Verlag, NewYork.
Manuscript history
- Received: 9 February 2023
- Revised: 30 March 2024
- Accepted: 7 May 2024
- Online First: 8 May 2024
Copyright information
Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Işbilir, Z., Akyigit, M., & Tosun, M. (2023). Pauli–Leonardo quaternions. Notes on Number Theory and Discrete Mathematics, 29(1), 1–16.
- Karataş, A. (2022). On complex Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(3), 458–465.
- Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97–101.
- Shannon, A. G., & Deveci, Ö. (2022). A note on generalized and extended Leonardo sequences. Notes on Number Theory and Discrete Mathematics, 28(1), 109–114.
- Shattuck, M. (2022). Combinatorial proofs of identities for the generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(4), 778–790.
Cite this paper
Yılmaz, C. Z., & Saçlı, G. Y. (2024). On some identities for the DGC Leonardo sequence. Notes on Number Theory and Discrete Mathematics, 30(2), 253-270, DOI: 10.7546/nntdm.2024.30.2.253-270.
