A. M. S. Ramasamy
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 2, Pages 236–252
DOI: 10.7546/nntdm.2024.30.2.236-252
Full paper (PDF, 284 Kb)
Details
Authors and affiliations
A. M. S. Ramasamy
Department of Mathematics, Pondicherry University
Pondicherry – 605014, India
Abstract
Let be an odd prime In Part I, starting from an -cycle in a finite field , we have established how the divisors of Mersenne, Fermat and Lehmer numbers arise. The converse question is taken up in this Part with the introduction of an arithmetic function and the notion of a split-associated prime.
Keywords
- M-cycle
- Jacobi symbol
- Arithmetic function
- Split-associated prime
- Root point
2020 Mathematics Subject Classification
- 11A25
- 11A41
- 11B50
- 11C08
- 11T06
- 11T30
References
- Brent, R. P., Crandall, R., Dilcher, K., & van Halewyn, C. (2000). Three new factors of Fermat numbers. Mathematics of Computation, 69(231), 1297–1304.
- Brillhart, J. (1964). On the factors of certain Mersenne numbers II. Mathematics of Computation, 18, 87–92.
- Brillhart, J., & Johnson, G. D. (1960). On the factors of certain Mersenne numbers. Mathematics of Computation, 14, 365–369.
- Dubner, H. (1996). Large Sophie Germain primes. Mathematics of Computation, 65(213), 393–396.
- Gostin, G. B. (1990). New factors of Fermat numbers. Mathematics of Computation, 64(209), 393–395.
- Hardy, G. H., & Wright, E. M. (1971). An Introduction to the Theory of Numbers. (4th ed.). The English Language Book Society.
- Kang, S. W. (1989). On the primality of the Mersenne number Mp. Journal of the Korean Mathematical Society, 26(1), 75–82.
- Kravitz, S. (1961). Divisors of Mersenne numbers 10, 000 < p < 15, 000. Mathematics of Computation, 15, 292–293.
- Ramasamy, A. M. S. (2024). Sequences in finite fields yielding divisors of Mersenne, Fermat and Lehmer numbers, I. Notes on Number Theory and Discrete Mathematics, 30(1), 116–140.
- Ribenboim, P. (1996). The New Book of Prime Number Records. Springer–Verlag.
- Roberts, J. (1992). Lure of the Integers. The Mathematical Association of America.
- Shanks, D. (1978). Solved and Unsolved Problems in Number Theory (2nd ed.). Chelsea Publishing Company.
- Yates, S. (1991). Sophie Germain primes. In: Rassias, G. M. (ed.) The Mathematical Heritage of C. F. Gauss. World Scientific Publication Company, 882–886.
Manuscript history
- Received: 25 August 2023
- Revised: 16 March 2024
- Accepted: 26 March 2024
- Online First: 8 May 2024
Copyright information
Ⓒ 2024 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Leyendekkers, J. V., & Shannon, A. G. (2005). Fermat and Mersenne numbers. Notes on Number Theory and Discrete Mathematics, 11(4), 17–24.
- Ramasamy, A. M. S. (2024). Sequences in finite fields yielding divisors of Mersenne, Fermat and Lehmer numbers, I. Notes on Number Theory and Discrete Mathematics, 30(1), 116–140.
- Ramasamy, A. M. S. (2024). Partitions of numbers and the algebraic principle of Mersenne, Fermat and even perfect numbers. Notes on Number Theory and Discrete Mathematics, 30(4), 755-775.
Cite this paper
Ramasamy, A. M. S. (2024). Sequences in finite fields yielding divisors of Mersenne, Fermat and Lehmer numbers, II. Notes on Number Theory and Discrete Mathematics, 30(2), 236-252, DOI: 10.7546/nntdm.2024.30.2.236-252.