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1 Introduction

Numbers of the forms 2n−1, 2n+1 and 22
n
+1 are referred to as Mersenne, Lehmer and Fermat

numbers, respectively. The main purpose of this study is to establish the algebraic principle upon
which the factors of these numbers arise. In Part I, [9], the author has introduced the polynomial
sequences {Fk(x)}, {Gk(x)} and {Hk(x)} over Z defined as follows:

F1(x) = x, Fk+1(x) = (Fk(x))
2 − 2, ∀ k ∈ N,

G0(x) = 1, G1(x) = x− 1, Gk+2(x) = xGk+1(x)−Gk(x) (k ≥ 0),

H0(x) = 1, H1(x) = x+ 1, Hk+2(x) = xHk+1(x)−Hk(x) (k ≥ 0).

Copyright © 2024 by the Author. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
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In [9], the equivalence of the following statements have been proved:

(a) 2j + 1 | 2m+ 1,

(b) Gj(x) | Gm(x),

(c) Hj(x) | Hm(x), ∀ j,m > 0.

The concept of satellite polynomial has been introduced.

(i) A polynomial p(x) ∈ Z[x] is said to be a satellite polynomial for Gj(x) if p(x) | Gj(x) but
p(x) ̸∈ {Gk(x)}.

(ii) A polynomial q(x) ∈ Z[x] is said to be a satellite polynomial for Hj(x) if q(x) | Hj(x) but
q(x) ̸∈ {Hk(x)}.

With ρ a prime, the values assumed by the sequences in the field Fρ have been considered, leading
to the sequences {M(t)}, {θt,k} and {ψt,k}, respectively.

Let ρ be an odd prime ≥ 11. Let M(t) ∈ Fρ − {0,±1,±2} such that M2
k ̸= 2, 3 for all k in

the cycle M(t) = M1 → M2 → · · · → Mn → Mn+1 = M1 → · · · where Mk = M(t + k − 1)

= M2
k−1 − 2. Define ψt,0 = 1, ψt,1 = M(t) + 1, ψt,k = M(t)ψt,k−1 − ψt,k−2, ∀ k ≥ 2. Let ω be

the smallest positive integer such that ψt,ω = 0. Then it has been proved in Part I [9], that ω ≥ n

and 2ω + 1 | 2n − 1 or 2n + 1. It has also been proved that n | 1
2
Φ(2ω + 1).

In Part I, starting from an M -cycle in Fρ, we have established how the divisors of Mersenne,
Fermat and Lehmer numbers arise. The converse question is taken up in this part. One may
refer to Brent, Crandall, Dilcher and van Halewyn [1], Brillhart and Johnson [2], Brillhart [3],
Gostin [5], Kang [7], Kravitz [8] and Ribenboim [10] for several results on the factors of Mersenne
and Fermat numbers. Starting with such a factor, how to find an odd prime ρ and the M -cycle in
Fρ contributing the factor under consideration? This is the focus of attention in this part.

First we develop the necessary preliminaries and then proceed to settle the converse question.
The main results of this study are contained in Theorems 3.2, 3.3, 4.2, 5.10, 6.2, Corollary 6.3
and Theorem 7.3. A summary of results is furnished in Section 8.

2 Classification of M -cycles in the field Fρ

Consider an M -cycle of length n in the field Fρ denoted by M1→M2→· · ·→Mn→M1→· · · .
Let ω be the corresponding pivotal position in C1(t). In view of [9, Corollary 5.3],M1,M2,. . .,Mn

are roots of the polynomial Hω(x) over Fρ. We have the following:

Definition 2.1 (Types of M -cycles). We say that the M -cycle of length n in Fρ is of type I if the
M -cycle contributes all the roots of Hω(x) and of type II if the elements of the M -cycle form a
proper subset of the set of roots of Hω(x). i.e., the M -cycle is of type I if ω = n and of type II if
ω > n.

Example 2.1. Consider the field F43. Let (p
q
) denote the Jacobi symbol. We obtain ( 6

43
) = 1. It is

noted that 362 = 1296 ≡ 6 (mod 43). Hence 362 − 2 ≡ 4 (mod 43). Choosing M(t) = 4, we
get the cycle 4 → 14 → 22 → 9 → 36 → 4 → · · · in F43 for which n = 5. The Ψ-sequence
corresponding to M(t) = 4 is Ψt,0 = 1,Ψt,1 = 5,Ψt,2 = 19, . . . , which attains the value of zero
at ω = 5. Since ω = n, the M -cycle is of type I.
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Example 2.2. Take the field F1301. We have ( 36
1301

) = 1. We obtain 12952 =1677025≡ 36 (mod

1301). Therefore 12952 − 2 ≡ 34 (mod 1301). Beginning with M(t) = 34, we get the cycle
34 → 1154 → 791 → 1199 → 1295 → 34 → · · · in F1301 for which n = 5. The Ψ-sequence
corresponding to M(t) = 34 is Ψt,0 = 1, Ψt,1 = 35, Ψt,2 = 1189, . . . , which attains the value of
zero at ω = 15. As ω > n, the M -cycle is of type II.

Example 2.3. Consider the field Fρ with ρ = 139. We note that ( 16
139

) = 1. On computation,
we get 1352 = 18225 ≡ 16 (mod 139). Consequently 1352 − 2 ≡ 14 (mod 139). Choosing
M(t) = 14, we obtain the cycle 14 → 55 → 104 → 111 → 87 → 61 → 105 → 42 → 94 →
77 → 89 → 135 → 14 → · · · in Fρ of length 12. The Ψ-sequence corresponding to M(t) = 14

is Ψt,0 = 1, Ψt,1 = 15, Ψt,2 = 70, . . . , which attains the value of zero at ω = 17. Since ω > n,
the M -cycle is of type II.

Remark 2.1. The polynomial satisfied by the elements of the M -cycle is a satellite polynomial of
Hω(x) in Example 2.2, as well as Example 2.3.

Theorem 2.1. If there is an M -cycle of type I in Fρ, then 2ω + 1 is necessarily a prime.

Proof. If possible, suppose 2ω + 1 is composite. Let 2d+ 1 be a proper divisor of 2ω + 1. Then
by [9, Theorems 2.12 and 2.15] we have

Hω(x) = Hd(x)p(x), (2.1)

whereHd(x) ∈ {Hk(x)} and p(x) ̸∈ {Hk(x)} and they are non-trivial polynomials over Z. Since
the degree of p(x) is less than the degree of Hω(x), not all the roots of Hω(x) in Fρ can be roots
of p(x). Therefore, there is at least one root of Hω(x) in Fρ which also satisfies Hd(x). Since
ω = n, all the roots of Hω(x) are the elements of an M -cycle. Hence Hd(M(t)) = 0 for some
M(t) ∈ Fρ.However, sinceHd(x) is an element of the sequence {Hk(x)}, from [9, Theorem 6.1]
it is seen that all the other elements in the M -cycle also satisfy Hd(x). Consequently, we have
the degree of Hd(x) equals the degree of Hω(x). This implies that degree of p(x) = 0, which is
a contradiction.

Remark 2.2. The converse of the above theorem, however, does not hold as noted in Example 2.2.

Theorem 2.2. If the cycle M1 →M2 → · · · →Mn is of type I in Fρ, then

n∑
i=1

Mi ≡ −1 (mod ρ). (2.2)

Proof. By assumption, ω = n. Hence, the polynomial Hω(x) has degree n. The coefficients
of xn and xn−1 in Hω(x) are both 1. Since M1,M2, . . . ,Mn exhaust all the roots of Hω(x), it
follows from the theory of equations that

∑n
i=1Mi ≡ −1 (mod ρ).
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3 Classification of prime numbers in relation
to G(x) and H(x)-sequences

A result provided by [9, Theorems 2.12 and 2.14] is the distinction between odd primes and odd
composite numbers in the context of the polynomial sequences {Gk(x)} and {Hk(x)}. While
considering the polynomials Gm(x) and Hm(x), we have to distinguish between the following
two cases:

(i) 2m+ 1 is a composite number, and

(ii) 2m+ 1 is a prime number.

The first case has already been considered in [9, Section 2]. Now let us consider the case when
2m + 1 is a prime number. A few definitions become imperative in this context. The concept
of a satellite polynomial has been introduced in [9, Section 2, Subsection 7]. By [9, Definition
3.9], when an M -cycle is considered in the field Fρ, we refer to ρ as the background prime.
It has been proved in [9, Theorem 6.1] that the elements of an M -cycle are the roots of some
H(x)-polynomial. In this regard, we have the following classification of prime numbers.

Definition 3.1 (Split-associated prime). If 2m + 1 is a prime and if Hm(x) has a satellite
polynomial ∈ Fρ[x] whose roots are in Fρ for some background prime ρ, then 2m+ 1 is called a
split-associated prime.

If 2m + 1 is a prime and if Hm(x) has a satellite polynomial ∈ Fρ[x], then it follows that all
the proper factors of Hm(x) are satellite polynomials.

Definition 3.2 (Non-split-associated prime). If 2m + 1 is a prime and if Hm(x) does not have a
satellite polynomial ∈ Fρ[x] where ρ is a background prime for 2m + 1, then 2m + 1 is called a
non-split-associated prime.

Definition 3.3 (Universal satellite polynomial). A satellite polynomial of Hm(x), when it exists,
is said to be universal if it is the same irrespective of the background prime under consideration.

Example 3.1. The polynomial p(x) = x4 − x3 − 4x2 + 4x+ 1 is a factor of H7(x), whatever be
the background prime, and it is not in {Hk(x)}. Hence, p(x) is a universal satellite polynomial
for H7(x).

Definition 3.4 (Local satellite polynomial). A satellite polynomial of Hm(x), when it exists,
is said to be local, if it takes different expressions depending on the background prime under
consideration.

Example 3.2. The field F61 possesses the M -cycles 10 → 37 → 25 → 13 → 45 → 10 → · · · ,
12 → 20 → 32 → 46 → 40 → 12 → · · · and 23 → 39 → 55 → 34 → 56 → 23 → · · · , such
that the corresponding ω-value for each element of these cycles is 15. It is seen that the field F311

contains the M -cycles 10 → 98 → 272 → 275 → 50 → 10 → · · · , 28 → 160 → 96 → 195 →
81 → 28 → · · · and 37 → 123 → 199 → 102 → 139 → 37 → · · · , such that the corresponding
ω-value for each element of these cycles is also 15.
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As a result, H15(x) factorizes as (x5−8x4+23x3−9x2+54x−1)(x5−28x4+7x3−26x2+

46x− 1)(x5− 24x4+27x3− 18x2+14x− 1) and (x5− 83x4+288x3− 80x2+185x− 1)(x5−
249x4 + 82x3 − 99x2 + 265x − 1)(x5 − 289x4 + 248x3 − 124x2 + 164x − 1) in F61 and F311,
respectively. Thus, the coefficients of the factors of H15(x) depend on the concerned background
primes. Consequently, the satellite polynomials of H15(x) are local, whenever they exist in some
field Fρ. It follows that 31 is a split-associated prime.

Theorem 3.1. A necessary condition for a prime p to be split-associated is that p− 1

2
is composite,

but not conversely.

That the converse does not hold is illustrated by the following example.
Consider the prime p = 37. A background prime for p is 149. The following M -cycle exists

in F149: 7 → 47 → 121 → 37 → 26 → 78 → 122 → 131 → 24 → 127 → 35 → 31 → 65 →
51 → 66 → 33 → 44 → 146 → 7 → · · · .

For this cycle, ω = 18. Since ω = n, it follows that p is non-split-associated. However,
p− 1

2
is composite.

Theorem 3.2. If 2ω + 1 is a prime and if Hω(x) splits into satellite polynomials in Fρ[x], then
all the resulting factors of Hω(x) are of equal degree.

Proof. If there are two factors of Hω(x) in Fρ[x], of degrees n1 and n2, respectively, then by
[9, Theorem 8.2] we have 2ω + 1 | 2n1 − 1 and 2ω + 1 | 2n2 − 1 or 2ω + 1 | 2n1 + 1 and
2ω + 1 | 2n2 + 1.

Since the divisibility by 2ω + 1 is associated with the smallest n occurring as an exponent in
2n−1 or 2n+1, it follows that n1 = n2. A similar argument applies to the case of the occurrence
of several satellite polynomials as factors of Hω(x) in Fρ[x].

Employing a similar argument as in the above theorem, we have the following two theorems.

Theorem 3.3. Let ρ and ρ′ be two background primes for a prime 2ω + 1. If Hω(x) splits into
satellite polynomials, then the satellite polynomials of Hω(x) in Fρ[x] and F(ρ

′)[x] are of equal
degree.

Theorem 3.4. If 2ω + 1 is a prime and if Hω(x) splits into satellite polynomials in Fρ[x], then
all the resulting factors of Hω(x) are local satellite polynomials.

Proof. By Theorem 3.2, the resulting factors of Hω(x) are of equal degree. Let the degree of
any such polynomial be α and let the number of such factors be s. Then the roots of Hω(x) in Fρ

form s number of M -cycles of length α each. Suppose these M -cycles are:

M1,1 →M1,2 → · · · →M1,α →M1,1 → · · · ,
M2,1 →M2,2 → · · · →M2,α →M2,1 → · · · ,

...

Ms,1 →Ms,2 → · · · →Ms,α →Ms,1 → · · · .
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For each i = 1, 2, . . . s, let Si,j denote the elementary symmetric functions formed by the
elements of the i-th M -cycle, where j = 1, 2, . . . , α. Then

Hω(x) =
s∏

i=1

{xα − Si,1x
α−1 + Si,2x

α−2 − · · ·+ (−1)αSi,α}. (3.1)

Since the Si,j’s in (3.1) depend on Fρ[x], each factor of Hω(x) is a local satellite polynomial.

Corollary 3.1. For given Hω(x), the degree α of any aforesaid satellite polynomial of Hω(x) is
unique.

4 An arithmetic function

Introduction of a new arithmetic function becomes necessary for our study.

Definition 4.1 (Odd part of a natural number). Define δ : N → N as follows: Given a natural
number n, we can write n = 2λm, where λ ≥ 0 and m is an odd integer ≥ 1. We define
δ(1) = 1, δ(2λ) = 1, ∀λ ≥ 1 and δ(2λm) = m, ∀ λ ≥ 0, provided m is an odd integer. We refer
to δ(n) as the odd part of n.

We have the following theorem.

Theorem 4.1. δ is a completely multiplicative function.

Next we prove a crucial identity involving the arithmetic function δ. The result is contained
in the following theorem.

Theorem 4.2 (Property of the function δ). If α is any odd number ≥ 11, then

δ(α− 1)− 1

2
+
δ(α + 1)− 1

2
+

∣∣∣∣δ(α− 1)− 1

2
− δ(α + 1)− 1

2

∣∣∣∣
=

α− j

2
,∀ α ≡ j (mod 4), where j ∈ {1, 3}. (4.1)

Proof. Case (i): Suppose α ≡ 1 (mod 4). Write α = 4k + 1. Then δ(α − 1)− 1

2
=

δ(k)− 1

2
and

δ(α+ 1)− 1

2
= k. If k is odd, then δ(k) = k and if k is even, then δ(k) < k. Thus in any case, we

have δ(k)− 1

2
< k. Therefore, we get

δ(α − 1)− 1

2
+
δ(α + 1)− 1

2
+

∣∣∣∣δ(α− 1)− 1

2
− δ(α + 1)− 1

2

∣∣∣∣ = 2k =
α− 1

2
.

Case (ii): Suppose α ≡ 3 (mod 4). Write α = 4k + 3. Then δ(α − 1)− 1

2
= k and δ(α+ 1)− 1

2
=

δ(k + 1)− 1

2
. Whether k is odd or even, we have δ(k + 1)− 1

2
< k. Consequently, we obtain

δ(α− 1)− 1

2
+
δ(α + 1)− 1

2
+

∣∣∣∣δ(α− 1)− 1

2
− δ(α + 1)− 1

2

∣∣∣∣ = 2k =
α− 3

2
.

This completes the proof.

Corollary 4.1. There do not exist two distinct primes for which both corresponding odd parts are
identical.
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5 Relationship between the pivotal position
and the background prime

The concept of pivotal position has been introduced in [9, Definition 5.4]. Suppose ω is the
pivotal position in the ψt,k-sequence for an M(t)-cycle in Fρ[x]. In [9, Theorem 5.6], we have
proved that the middlemost positions in each compartment of a(M(t)) are occupied by the values
of 2

M(t−1)
and 0 in the first and second rows, respectively and these values are not attained at any

other places in the concerned compartment. Given t, it has been proved in [9, Corollary 5.4] that
the period of the cyclic sequence θt,k (resp. ψt,k) as a function of k is 2ω + 1. On the basis of
these results, we establish a relationship between ω and ρ. First we develop the preliminaries.

5.1 The linkage with arithmetic progressions

The role of arithmetic progressions has been brought out in [9, Theorem 2.13]. Further linkage
of the pivotal position in the ψt,k-sequence with certain arithmetic progressions is considered in
the sequel.

Definition 5.1 (Fundamental arithmetic progression associated with a natural number). Suppose
n ∈ N . An arithmetic progression with first term n and common difference 2n + 1 is called
the fundamental arithmetic progression associated with n and is denoted by S(n), i.e.,
S(n) = {n, 3n+ 1, 5n+ 2, . . . }.

Divisibility among odd numbers is transformed into an equivalent problem of arithmetic
progressions as follows:

Theorem 5.1. Suppose j,m ∈ N with j < m. Then 2j+1 | 2m+1 if and only if S(m) ⊂ S(j).

Proof. Suppose 2j+1 | 2m+1. Then we have m ≡ j (mod 2j+1). Hence m = j+ s(2j+1)

for some s ∈ N . Consequently, m ∈ S(j). In S(m), any element greater than m is of the form
m + s′(2m + 1) for some s′ ∈ N . Therefore S(m) ⊂ S(j), proving the if part. A similar proof
applies for the converse.

Corollary 5.1. If 2m+ 1 = pt where p is a prime, then

S(m) = S(
pt − 1

2
) ⊂ S(

pt−1 − 1

2
) ⊂ · · · ⊂ S(

p2 − 1

2
) ⊂ S(

p− 1

2
).

Corollary 5.2. If 2m+ 1 = pα1
1 pα2

2 · · · pαt
t where p1, p2, . . . , pt are distinct primes, then

S(m) = S(
pα1
1 − 1

2
) ∩ S(p

α2
2 − 1

2
) ∩ · · · ∩ S(p

αt
t − 1

2
).

5.2 Root points

We consider the positions in the second row of the matrix a(M(t)) at which the ψt,k-sequence
attains a zero with k ≥ ρ. First we have the following theorem.
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Theorem 5.2. Suppose a polynomial H(x)-sequence attains a root at ω in the second row of
the principal compartment C1(t) of the matrix a(M(t)). Then the positions in the second row of
a(M(t)) at which the polynomial attains a root are precisely the elements of S(ω).

Proof. When the ψt,k-sequence attains a zero at k = ω, by [9, Corollary 5.4] the next zero of the
sequence occurs at k = 3ω + 1. The proof is completed by a repetition of this argument.

Let us find the smallest non-negative integer h such that whenever the ψt,k-sequence contains
a root of Hω(x) in the field Fρ, it contains all the roots of Hω(x) in Fρ at ψt,k when k takes the
value of ρ+ h.

Definition 5.2 (Root point). Let ρ be a given odd prime. Suppose ω ∈ N . The root point of ρ
with respect to ω, if it exists, is denoted by r(ρ, ω) and is defined as the least natural number ρ +
h where h is the least non-negative integer such that Hω(x) attains all of its ω roots in Fρ at ψt,k

with
k = ρ+ h. (5.1)

If the root point of ρ with respect to ω does not exist, then we say that r(ρ, ω) is undefined.

Theorem 5.3. The value of h in (5.1) is 0 or else 1 ≤ h ≤ 2ω.

Proof. From [9, Corollary 5.4], it is seen that the roots of Hω(x) are attained in the ψt,k-sequence
at regular intervals of 2ω + 1. Hence the result.

5.3 Properties of the root points

We consider the derivation of a formula for r(ρ, ω), when it exists, in terms of ρ and ω. For this
purpose we establish certain properties of r(ρ, ω).

Theorem 5.4. If r(ρ, ω) exists, then r(ρ, ω) ∈ S(ω).

Proof. Follows from Theorem 5.2.

As a consequence of Theorem 5.4, we refer to r(ρ, ω) as the root point of ρ in S(ω).

Example 5.1. Let us consider r(307, 38). The M -cycles 63 → 283 → 267 → 63 → · · · and
47 → 58 → 292 → 223 → 300 → 47 → · · · contribute the roots of H3(x) and H5(x),

respectively in F307. The M -cycle 14 → 194 → 180 → 163 → 165 → 207 → 174 → 188 →
37 → 139 → 285 → 175 → 230 → 94 → 238 → 154 → 75 → 97 → 197 → 125 → 273 →
233 → 255 → 246 → 35 → 302 → 23 → 220 → 199 → 303 → 14 → · · · contributes 30
roots of H38(x) in F307. Since 7 and 11 are divisors of 77, all the roots of H3(x) and H5(x) are
also roots of H38(x). Consequently H38(x) has all of its roots in F307 and so r(307, 38) exists. By
Corollary 5.2, we have S(38) = S(3) ∩ S(5). Using Theorem 5.4, we obtain r(307, 38) = 346.

Notation. Let Ci(t, ρ, ω) (i = 1, 2, 3, . . .) denote the i-th compartment in the matrix a(t) corresponding
to the occurrence of the roots of the polynomial Hω(x) in Fρ[x]. The cells in each row of a(t)
are numbered 0, 1, 2, . . .. Let us call these numbers as the indices of the corresponding cells. We
have the following crucial result.
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Theorem 5.5. Suppose 2ω + 1 = (2ω1 + 1)(2ω2 + 1) where 2ω1 + 1 and 2ω2 + 1 are primes
with ω1 < ω2. If Hω(x) attains all of its roots in Fρ and if r(ρ, ω1) = ρ + h1, r(ρ, ω2) = ρ + h2,

r(ρ, ω) = ρ+ h, then h1 < h2 < h.

Proof. By Corollary 5.2, we have S(ω) = S(ω1) ∩ S(ω2). The root points of ρ with respect
to ω1, ω2 and ω imply that t1, t2, t ∈ N such that ρ + h1 = ω1 + t1(2ω1 + 1), ρ + h2 =

ω2 + t2(2ω2 + 1), ρ+ h = ω + t(2ω + 1).
We have ψt,ρ+h = 0, ψt,ρ+h1 = 0, ψt,ρ+h2 = 0. By assumption, Hω1(x) | Hω(x) and

Hω2(x) | Hω(x). Therefore, all the roots of Hω1(x) and Hω2(x) in Fρ[x] are also roots of
Hω(x). Since Hω(x) attains all of its roots at ψt,k with k = ρ + h, it follows that Hω1(x) and
Hω2(x) also attain all of their roots at ψt,k. Consequently, we have h1 ≤ h and h2 ≤ h. Let
s ∈ N such that Cs+1(t, ρ, ω) is the compartment in a(t) corresponding to which ρ is the index
of a cell. The total number of cells covered by the compartments Ci(t, ρ, ω) (i = 1, 2, . . . , s)

would have also been covered by the compartments corresponding to ω1 and ω2. The number
of compartments that are completed in the ψt,k-sequence before the occurrence of r(ρ, ω1) is
2(2ω2 + 1) while it is 2(2ω1 + 1) and 2 for r(ρ, ω2) and r(ρ, ω), respectively. Thus s = 2. The
index of the last cell in the last completed compartment in each case is 2(2ω2 + 1)(2ω1 + 1)− 1.

Thus there are equal number of cells in the compartments completed in the ψt,k-sequence before
the occurrence of any one of r(ρ, ω1), r(ρ, ω2) and r(ρ, ω) and the root points r(ρ, ω1), r(ρ, ω2)

and r(ρ, ω) occur in the immediate next cell in the ψt,k-sequence. Since ω1 < ω2, it is seen that
the cells in the ψt,k-sequence of Cs+1(t, ρ, ω) containing the roots of Hω1(x), Hω2(x) and Hω(x)

occur in this order. Hence we have r(ρ, ω1) < r(ρ, ω2) < r(ρ, ω). From this relation we conclude
that h1 < h2 < h.

Corollary 5.3. Suppose

2ω + 1 = (2ω1 + 1)(2ω2 + 1) · · · (2ωu + 1),

where 2ω1+1, 2ω2+1, . . . , 2ωu+1 are primes with ω1 < ω2 < · · · < ωu. If Hω(x) attains all of
its roots in Fρ and if r(ρ, ω1) = ρ+h1, r(ρ, ω2) = ρ+h2, . . . , r(ρ, ωu) = ρ+hu, r(ρ, ω) = ρ+h,

then h1 < h2 < · · · < hu < h.

Next we establish an important condition for the polynomial Hω(x) to attain roots in two
different finite fields.

Theorem 5.6. If ρ and ρ′ are primes with ρ′ > ρ and ρ′ ≡ ρ (mod 2ω + 1) and if Hω(x) attains
all of its roots in both the fields Fρ and Fρ′ , then r(ρ′, ω)− r(ρ, ω) = ρ′ − ρ.

Proof. Let us take r(ρ, ω) = ρ + h and r(ρ′, ω) = ρ′ + h′. By Theorem 5.3, we have h = 0 or
else 0 < h < 2ω + 1 and h′ = 0 or else 0 < h′ < 2ω + 1. Since ρ and ρ′ are odd, it follows that
ρ′ ≡ ρ (mod 2(2ω+1)). The sequence Ψt,k attains a zero at k = r(ρ, ω). The next two positions
in the Ψt,k-sequence where it attains zeros in Fρ are r(ρ, ω) + 2ω + 1 and r(ρ, ω) + 2(2ω + 1),

respectively.
Let s ∈ N such that Cs+1(t, ρ, ω) is the compartment in a(t) corresponding to which ρ is the

index of the cell. The index of the last cell in the completed compartments before the occurrence
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of ρ as the index of a cell is s(2ω + 1) − 1. The cells with indices ρ and ρ + h occur in the
immediate next compartment.

Let s′ ∈ N such that Cs′+1(t, ρ, ω) is the compartment in a(t) corresponding to which ρ′ is the
index of a cell. The cells with indices ρ′ and ρ′ + h′ occur in the immediate next compartment.

Let us consider the forward movement along the ψt,k-sequence from the s-th compartment
to (s′ + 1)-st compartment. Since ρ′ ≡ ρ (mod 2ω + 1), the number of cells from the leftmost
cell in the (s + 1)-st compartment to the cell with index ρ is the same as the number of cells
from the leftmost cell in the (s′ + 1)-st compartment to the cell with index ρ′. Since a root of
Hω(x) occurs after h positions from ρ in the ψt,k-sequence and the roots of Hω(x) are attained
in the ψt,k-sequence at regular intervals of 2ω + 1, it follows that a root of Hω(x) occurs after h
positions from ρ′ in the ψt,k-sequence. Since h′ is the least non-negative integer such that Hω(x)

attains all of its ω roots in Fρ′ at ψt,k where k = ρ′ + h′, it follows that h′ ≤ h. Similarly,
considering the backward movement along the ψt,k-sequence from the (s′ + 1)-st compartment
to (s + 1)-st compartment, it is seen that h ≤ h′. Hence we obtain h′ = h. Consequently,
r(ρ′, ω)− r(ρ, ω) = ρ′ − ρ.

Corollary 5.4. If ρ and ρ′ are primes as in Theorem 5.6, then we have

r(ρ′, ω) ≡ r(ρ, ω) (mod 2(2ω + 1)).

Theorem 5.7. Suppose t ∈ N, t ≥ 2. Let 2ω1 + 1 be a prime and 2ωt + 1 = (2ω1 + 1)t. If
Hωt(x) attains all of its roots in Fρ and if r(ρ, ω1) = ρ + h1, r(ρ, ωt) = ρ + ht, then
r(ρ, ωi+2)− r(ρ, ωi+1) = ω1(2ω1 + 1)i, ∀ i ≥ 0.

5.4 Attainment of roots of H(x)-polynomial

With the necessary tools having been constructed, we prove a result on the attainment of roots of
H(x)-polynomial in the field Fρ with ρ ≥ 11. We have to distinguish between two cases:

(i) 3 | 2ω + 1, and

(ii) 3n | 2ω + 1.

Theorem 5.8. If 3 | 2ω + 1, then a necessary condition for Hω(x) to attain all of its roots in a
field Fρ is that 2ω + 1 | δ(ρ− 1) or δ(ρ+ 1).

Proof. Suppose 2ω + 1 = (2d1 + 1)(2d2 + 1) with d1 < d2. Then ω = 2d1d2 + d1 + d2.
Suppose r(ρ, d1) = ρ + h1, r(ρ, d2) = ρ + h2 and r(ρ, ω) = ρ + h. Then we have r(ρ, d1) =
d1 + 2(2ω + 1), r(ρ, d2) = d2 + 2(2ω + 1) and r(ρ, ω) = ω + 2(2ω + 1). Consequently,

h2 − h1 = d2 − d1. (5.2)

This implies that h1 = d1+1 if and only if h2 = d2+1 and h1 = d1−1 if and only if h2 = d2−1.
Now consider the assumption that 3 | 2ω + 1. Let us take d1 = 1. Then h1 = 0 or 2.

Consequently, h2 = d2 + 1 or d2 − 1. Hence the theorem.
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Theorem 5.9. Suppose 3 ∤ 2ω + 1 and Hω(x) attains all of its roots in a field Fρ. Suppose
2ω′ + 1 = 3(2ω + 1). If Hω′(x) attains all of its roots in some field Fρ′ then 2ω + 1 | δ(ρ− 1) or
δ(ρ+ 1).

Proof. Suppose r(ρ, ω) = ρ + h and r(ρ′, ω′) = ρ′ + h′. By Corollary 5.4, we have
r(ρ′, ω) ≡ r(ρ, ω) (mod 2(2ω + 1)). Hence r(ρ, ω) = ρ′ + h′. By Theorem 5.8, the result
holds for Hω′(x) when 2ω′ + 1 is a multiple of 3. Hence 2ω′ + 1 | δ(ρ′ − 1) or δ(ρ′ + 1). This
implies that 2ω+1 | δ(ρ′− 1) or δ(ρ′+1). Hence h′ = d1+1 or d1− 1. Consequently we obtain
h = d1 + 1 or d1 − 1. Thus the theorem holds for Hω(x).

Combining Theorems 5.8 and 5.9, we obtain the following condition for the attainment of all
the roots of a H(x)-polynomial.

Theorem 5.10. Let ρ be any given odd prime ρ ≥ 11. A necessary condition for Hω(x) to attain
all of its roots in Fρ is that 2ω + 1 | δ(ρ− 1) or δ(ρ+ 1).

6 Full complement of the roots of polynomials
of H(x)-sequence

The results in this section come as offshoots of Theorem 4.2. We find an answer to the converse
problem emanating from the result contained in Theorem 5.10.

6.1 Existence of non-singular M -cycles in the field Fρ

Let ρ be a given prime ≥ 11. In the ordered pair (n, ω) with n, ω ∈ N , let n denote the length
of an M -cycle in a field Fρ and ω denote the pivotal position in C1(t) at which the ψt,k-sequence
attains a zero. We have established in Section 5 that 2ω + 1 | δ(ρ − 1) or δ(ρ + 1). Because of
this property, the M -cycles in Fρ can be put in the following two disjoint classes:

(i) M -cycles associated with δ(ρ− 1), and

(ii) M -cycles associated with δ(ρ+ 1).

If ρ is of the form 2τ − 1, then δ(ρ + 1) = 1. This implies that δ(ρ − 1) attains the maximum
possible value and so all the M -cycles in Fρ are associated with δ(ρ − 1). Similarly, if ρ is of the
form 2τ + 1, then all the M -cycles in Fρ are associated with δ(ρ+ 1).

Theorem 6.1. If ρ is not of the form 2τ − 1 or 2τ + 1, then there exist at least two non-trivial
M -cycles in Fρ whose corresponding ω values are such that 2ω + 1 | δ(ρ − 1) and δ(ρ + 1),

respectively.

Proof. The existence of at least one non-trivialM -cycle in Fρ has been established in [9, Theorem
3.4]. One of δ(ρ− 1), δ(ρ+1) has a minimum value of 3 whereas the other one gets a minimum
value of 5 with gcd(δ(ρ − 1), δ(ρ + 1)) = 1. This implies that

∣∣∣ δ(ρ−1)−1
2

− δ(ρ+1)−1
2

∣∣∣ ≥ 1.

Invoking the identity provided by Theorem 4.2, it is seen that δ(ρ−1)−1
2

< ρ−j
2

and δ(ρ+1)−1
2

< ρ−j
2
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where j ∈ {1, 3} and j ≡ ρ (mod 4). This implies that neither δ(α−1)−1
2

nor δ(α+1)−1
2

attains the
maximum possible value. Therefore while it may be the case that several non-trivial M -cycles in
Fρ are associated with δ(ρ− 1), at least one non-trivial M -cycle is associated with δ(ρ + 1) and
vice versa. Hence the theorem.

Corollary 6.1. If ρ is not of the form 2τ − 1 or 2τ + 1, then each one of the polynomials
H δ(ρ−1)−1

2

(x) and H δ(ρ+1)−1
2

(x) attains at least two roots in Fρ.

Proof. Follows from [9, Theorem 6.1] and Theorem 6.1.

In Definition 3.9 of [9], the concept of background prime for theM -cycle has been introduced.

Definition 6.1 (Minimum background prime). Given 2ω + 1 ∈ N , the least among all the
background primes of 2ω + 1 is called the minimum background prime for 2ω + 1 .

Certain primes are named after Sophie Germain (1776–1831).

Definition 6.2 (Sophie Germain and safe primes). A prime p is said to be Sophie Germain if
2p+1 is also a prime (see for e.g., Ribenboim [10], Roberts [11] and Shanks [12]). An odd prime
p is called a safe prime if p− 1

2
is also a prime.

Large Sophie German primes were determined by Dubner [4]. The distribution of these
primes was studied by Yates in [13].

An important property possessed by any odd prime ρ in respect of the roots of H(x)-
polynomials is obtained in the following theorem.

Theorem 6.2 (Existence of full complement of the roots of Hω(x)). If ρ is an odd prime ≥ 11

and if 2ω + 1 | δ(ρ− 1) or δ(ρ+ 1), then the polynomial Hω(x) attains all of its roots in Fρ.

Proof. We give a proof by induction on ω. First we prove the result for the minimum background
prime for 2ω + 1 and then extend it to a general background prime for 2ω + 1.

When ω = 1, we have the M -cycle −1 → −1 → −1 → · · · , which contributes the root viz.
−1 of H1(x). For the case of ω = 2, consider any odd prime ρ ≡ ± 1 (mod 10). In this case,(

5
ρ

)
= 1 and so there exists some element c ∈ Fρ such that c2 ≡ 5 (mod ρ).

Take M1 = c−1
2

where 1
2

is the multiplicative inverse of 2 in Fρ. We check that M1 ̸≡ 0,±1,

±2 (mod ρ). We have M2 = M2
1 − 2 ≡ − c+1

2
(mod ρ) and M3 = M2

2 − 2 ≡ c−1
2

(mod ρ).

Thus we obtain the M -cycle M1 → M2 → M1 → · · · . It is seen that the elements of this cycle
are the roots of H2(x) = x2 + x− 1.

One can check the cases of ω = 3 through 7 by considering the minimum background prime
for 2ω + 1. In the case of ω = 8, the minimum background prime for H8(x) is got as 67.
In F67, we have the two M -cycles 13 → 33 → 15 → 22 → 13 → · · · and 14 → 60 → 47 →
63 → 14 → · · · with ω = 8 for each of these cycles. So H8(x) attains all of its roots in F67. Thus
there is a basis for induction on ω.

Assume the theorem for all satellite polynomials of H(x) of degree < m and for all fields
Fρ where ρ is the minimum background prime for 2ω + 1. Now consider Hm(x). Let ρ be the
minimum background prime for 2m + 1. By Theorem 6.1, it follows that H(x) has at least one
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root in Fρ. Starting from this root, we obtain anM -cycle in Fρ of length ≥ 2. We have to consider
separately two cases viz. when 2m+ 1 is: (i) a prime, and (ii) a composite number.

Case (i). 2m+ 1 is a prime. We have to consider two sub-cases.

• Sub-case (i) (A). m is a prime. In this case m is a Sophie Germain prime. It is seen that
Hm(x) has no satellite polynomial. The result in this case follows from [9, Theorems 2.12
and 6.1].

• Sub-case (i) (B). m is a composite number.

– Sub-case (i) (B) (I). 2m + 1 is a non-split-associated prime. In this case, Hm(x) has
no satellite polynomial and so it attains all of its ω roots in Fρ.

– Sub-case (i) (B) (II). 2m+1 is a split-associated prime. By Theorem 6.1, there exists
at least one root ofHm(x) in Fρ. By [9, Theorem 6.1], starting from one root ofHm(x),
we obtain a non-trivial M -cycle in Fρ all of whose elements are roots of Hm(x). Let
us form a polynomial λ(x), using each one of these elements as a root exactly once.
By Theorem 3.4, λ(x) is a local satellite polynomial of degree ≥ 4 for Hm(x). Now
µ(x) = Hm(x)

λ(x)
is a satellite polynomial of Hm(x) and deg(µ(x)) = deg(Hm(x)) −

deg(λ(x)) ≤ m − 4 < m. By the induction assumption, µ(x) has all of its roots in
Fρ. Since each root of µ(x) is also a root of Hm(x), putting together the roots of λ(x)
and µ(x) we obtain all the m roots of Hm(x) in Fρ.

Case (ii). 2m + 1 is composite. In this case, there exists a prime divisor 2j + 1 of 2m + 1.
By [9, Theorems 2.12], Hj(x) is a divisor of Hm(x). Since j < m, by Case (i), Hj(x) attains
all of its roots in Fρ. Now Hm(x)

Hj(x)
, being a satellite polynomial of Hm(x) of degree m − j < m,

attains all of its roots in Fρ which in turn implies the result for Hm(x).

Thus the theorem holds in all the sub-cases, in respect of the field Fρ where ρ is the minimum
background prime for 2ω + 1. We now extend the proof to all the fields Fη where η is any other
background prime for 2ω + 1 implying η > ρ.

The elements in Fρ which form M -cycles are linked to the quadratic residues in Fρ. If 2ω+1

is associated with δ(ρ − 1) in Fρ and δ(η − 1) in Fη, then considering the number of quadratic
residues associated with the odd parts in the concerned fields, it is seen that at least as much
quadratic residues are associated with δ(η − 1) in Fη as are associated with δ(ρ − 1) in Fρ.
A similar result holds if 2ω+1 is associated with δ(ρ − 1) and δ(η+1) or δ(ρ+1) and δ(η− 1),
or δ(ρ+1) and δ(η+1) in the concerned fields. So δ(η − 1) (or δ(η+1), as the case may be) is
associated with at least ω roots of H(x) in Fη. Since the number of roots of H(x) cannot exceed
ω, it follows that H(x) has all of its roots in Fη.

Corollary 6.2. Given an odd prime ρ ≥ 11, the polynomialsH δ(ρ−1)−1
2

(x) andH δ(ρ+1)−1
2

(x) attain
all of their roots in Fρ.

Proof. Follows from Corollary 6.1 and Theorem 6.2.
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6.2 Consideration of the converse question

Given an M -cycle in a field Fρ, it follows from [9, Theorem 6.1] and Theorem 5.10 that the
corresponding ψt,k-sequence attains a zero at ω in C1(t) such that 2ω+1 divides one of δ(ρ− 1),

δ(ρ + 1). The converse question is: Given a divisor 2ω + 1 of δ(ρ − 1) or δ(ρ + 1), is there
an M -cycle in Fρ for which the corresponding ψt,k-sequence attains a zero at ω in C1(t)? The
answer is in the affirmative. From Theorems 6.1 and 6.2 and Corollary 6.2, we are led to the
following corollary.

Corollary 6.3. Given an odd prime ρ ≥ 11 and any divisor 2ω + 1 of δ(ρ− 1) or δ(ρ+ 1), the
polynomial Hω(x) attains all of its roots in Fρ.

This establishes the sufficiency of the condition in Theorem 5.10.

Corollary 6.4. Every satellite polynomial of H δ(ρ−1)−1
2

(x) (respectively, H δ(ρ+1)−1
2

(x)) attains all
of its roots in Fρ.

Remark 6.1. An important difference between the stationary sequences 2 → 2 → 2 → · · · and
−1 → −1 → −1 → · · · is brought out by Theorem 6.2. The former sequence does not contribute
a root of any polynomial in the H(x)-sequence. In contrast, as seen in the course of the proof of
Theorem 6.2, the latter sequence contributes a root of H1(x). Further, if 2ω + 1 is divisible by 3,
the latter sequence also satisfies Hω(x) along with some other polynomial ∈ H(x)-sequence and
a satellite polynomial of Hω(x). Because of this distinction, we refer to the former as singular
whereas the latter is said to be non-singular.

7 M -cycles in the field Fρ from the divisors
of Mersenne and Lehmer numbers

Previously we have seen the role of arithmetic progressions in the method of cyclic sequences
in [9, Section 2] and Section 5 of this Part II. Yet another role of arithmetic progressions is
brought out in this section.

7.1 Problem to be considered

In Part I, starting from an M -cycle in a field Fρ, we have seen how the divisors of Mersenne
and Lehmer numbers are obtained as established in [9, Theorem 8.2]. In the other direction,
now we take up the following question: Starting from a given divisor of 2n − 1 or 2n + 1, is it
possible to obtain a field Fρ which contains an M -cycle of length n such that the corresponding
ψt,k-sequence attains a zero at ω in the compartment C1(t)?

To answer this question, we consider an application of Dirichlet’s theorem on primes in
arithmetic progression. Dirichlet (see for e.g., Hardy and Wright [6]) proved the following
theorem: If a is positive and a and b have no common divisor except 1, then there are infinitely
many primes of the form an+ b.

Employing the above result, we have the following theorem.
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Theorem 7.1. Given 2ω + 1 ∈ N , each one of the sequences {2n(2ω + 1) − 1 / n ∈ N} and
{2n(2ω + 1) + 1 / n ∈ N} contains infinitely many primes.

As a consequence of Theorem 7.1, given 2ω + 1 ∈ N , the existence of infinitely many
background primes for 2ω + 1 is guaranteed. In Theorem 6.2, it has been proved that the
polynomial H(x) attains all of its roots in Fρ. As a result, starting from a given divisor 2ω + 1 of
2n − 1 or 2n+1 and choosing any background prime ρ for 2ω+1, we obtain either one M -cycle
or several M -cycles in Fρ such that all the corresponding ψt,k-sequences attain zeros at k = ω, as
shown in [9, Theorem 6.1].

Thus we have proved the following theorem.

Theorem 7.2. Given any natural number ω, there exist infinitely many background primes ρ for
2ω + 1 such that the polynomial Hω(x) attains all of its roots in Fρ.

We observe that the converse of [9, Theorem 8.2] is established by Corollary 6.3 and
Theorem 7.2.

7.2 How do the divisors of Mersenne, Fermat and Lehmer numbers emerge?

From [9, Theorems 6.1 and 8.2] and Theorems 6.2 and 7.2, a complete theory follows as to the
emergence of the divisors of Mersenne, Fermat and Lehmer numbers. It is seen that the divisors
of Mersenne and Lehmer numbers lead to M -cycle in a field Fρ. A related question is: Starting
from a given n ∈ N , how to obtain an M -cycle of length n? For this, we recall the relationship
between n and ω in [9, Theorem 8.3], namely n | 1

2
Φ(2ω + 1). Given n ∈ N , we select the

smallest ω ∈ N such that n | 1
2
Φ(2ω + 1). Choose an odd prime ρ such that (2ω + 1) | ρ − 1

or ρ + 1. Then there exists an M -cycle of length n in Fρ. Thus we have obtained the following
theorem.

Theorem 7.3. If 2ω+1 is a given divisor of a Mersenne or Lehmer or Fermat number, then there
exists a background prime ρ for 2ω + 1 such that the field Fρ contains an M -cycle for which the
ψt,k-sequences attain zeros at k = ω.

Example 7.1. Suppose that the M -cycle for the divisor 47 of 223 − 1 is required. We employ
Theorem 6.2. For 2ω + 1 = 47, we search for a background prime ρ which should be such that
(2ω + 1) | ρ − 1 or ρ + 1. We see that the prime 281 satisfies the required condition. In F281,
we obtain the M -cycle 15 → 223 → 271 → 98 → 48 → 54 → 104 → 136 → 229 → 173 →
141 → 209 → 124 → 200 → 96 → 222 → 107 → 207 → 135 → 239 → 76 → 154 → 110 →
15 → · · · of length n = 23.

Example 7.2. Consider the divisor 59 of 229 + 1. For 2ω + 1 = 59, a background prime ρ is
obtained as 353. In F353, we get the M -cycle 7 → 47 → 89 → 153 → 109 → 230 → 301 →
231 → 56 → 310 → 82 → 15 → 223 → 307 → 349 → 14 → 194 → 216 → 58 → 185 →
335 → 322 → 253 → 114 → 286 → 251 → 165 → 42 → 350 → 7 → · · · of length n = 29.

250



8 Conclusion

Numbers of the forms 2n− 1, 2n+1 and 22
n
+1 are referred to as Mersenne, Lehmer and Fermat

numbers, respectively. We consider the following sequences:

F1(x) = x, Fk+1(x) = (Fk(x))
2 − 2,∀ k ∈ N,

G0(x) = 1, G1(x) = x− 1, Gk+2(x) = xGk+1(x)−Gk(x) (k ≥ 0),

H0(x) = 1, H1(x) = x+ 1, Hk+2(x) = xHk+1(x)−Hk(x) (k ≥ 0).

We have proved the following result: Let ρ be an odd prime ≥ 11. Let M(t) ∈ Fρ − {0,±1,±2}
such that M2

k ̸= 2, 3 for all k in the cycle M(t) = M1 → M2 → · · · → Mn → Mn+1 =

M1 → · · · , where Mk = M(t + k − 1) = M2
k−1 − 2. Define ψt,0 = 1, ψt,1 = M(t) + 1,

ψt,k = M(t)ψt,k−1 − ψt,k−2, ∀ k ≥ 2. Let ω be the smallest positive integer such that ψt, ω = 0.
Then 2ω + 1 | 2n − 1 or 2n + 1 and n | 1

2
Φ(2ω + 1).

The M -cycles are classified as type I and type II and primes are classified as split-associated
and non-split-associated. If 2ω + 1 is a prime and if Hω(x) splits into satellite polynomials
in Fρ[x], then we have proved that all the resulting factors of Hω(x) are of equal degree. If ρ
and ρ′ are two background primes for a prime 2ω + 1 and if Hω(x) is split-associated, then we
have proved that the satellite polynomials of Hω(x) in Fρ[x] and F(ρ

′)[x] are of equal degree.
The converse question is taken up: Given the divisors of Mersenne or Lehmer numbers, how
to find a field Fρ and the M -cycles in Fρ which would yield the factors under consideration?
For establishing a relationship between the pivotal position and the background prime, we have
employed the concept of root points which enables us to determine the roots of polynomials of
H(x)-sequence. We have proved the following result: If ρ is an odd prime, a necessary condition
for Hω(x) to attain all of its roots in Fρ is that 2ω + 1 | δ(ρ − 1) or δ(ρ + 1). Using this result,
we are led to M -cycles from the divisors of Mersenne or Lehmer numbers. We have obtained
the following result: If ρ is an odd prime ≥ 11 and if 2ω + 1 | δ(ρ − 1) or δ(ρ + 1), then the
polynomial H(x) attains the full complement of roots in Fρ. This establishes the sufficiency of
the condition. Using Dirichlet’s theorem on primes in arithmetic progression, we have proved the
following theorem: Given any natural number ω, there exist infinitely many background primes
ρ for 2ω + 1 such that the polynomial Hω(x) attains all of its roots in Fρ.
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