Generalized perfect numerical semigroups

Mohammad Zmmo and Nesrin Tutaş
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 1, Pages 150–162
DOI: 10.7546/nntdm.2024.30.1.150-162
Full paper (PDF, 461 Kb)

Details

Authors and affiliations

Mohammad Zmmo
Department of Mathematics, Akdeniz University
07058, Antalya, Turkey

Nesrin Tutaş
Department of Mathematics, Akdeniz University
07058, Antalya, Turkey

Abstract

In this work, we study the isolated gaps for generalized numerical semigroups, introduce generalized perfect numerical semigroups, and exemplify these semigroups. In particular, we reveal the effects of the perfectness condition on a generalized Weierstrass semigroup.

Keywords

  • Numerical semigroups
  • Generalized numerical semigroups
  • Perfect semigroups

2020 Mathematics Subject Classification

  • Primary: 20M75
  • Secondary: 20M14, 11D07

References

  1. Beelen, P., & Tutaş, N. (2006). A generalization of the Weierstrass semigroup. Journal of Pure and Applied Algebra, 207, 243–260.
  2. Carvalho, C., & Torres, F. (2005). On Goppa codes and Weierstrass gaps at several points. Designs, Codes and Cryptography, 35, 211–225.
  3. Castellanos, A. S., & Tizziotti, G. (2016). Two-point AG Codes on the GK maximal curves. IEEE Transactions on Information Theory, 62(2), 681–686.
  4. Cisto, C., Failla, G., & Utano, R. (2019). On the generators of a generalized numerical semigroup. Analele stiintifice ale Universitatii Ovidius Constanta, 27(1), 49–59.
  5. Cisto, C., Failla, G., Peterson, C., & Utano, R. (2019). Irreducible generalized numerical semigroups and uniqueness of the Frobenius element. Semigroup Forum, 99, 481–495.
  6. Failla, G., Peterson, C., & Utano, R. (2016). Algorithms and basic asymptotics for generalized numerical semigroups in Nd. Semigroup Forum, 92, 460–473.
  7. Garcia, A., Kim, S. J., & Lax, R. F. (1993). Consecutive Weierstrass gaps and minimum distance of Goppa codes. Journal of Pure and Applied Algebra, 84(2), 199–207.
  8. Kim, S. J. (1994). On the index of the Weierstrass semigroup of a pair of points on a curve. Archiv der Mathematik, 62, 73–82.
  9. Matthews, G.L. (2004). The Weierstrass Semigroup of an m-tuple of Collinear Points on a Hermitian Curve. In: Mullen, G. L., Poli, A., & Stichtenoth, H. (Eds.). Finite Fields and Applications. Springer, Berlin, pp. 12-24.
  10. Matthews, G. L. (2005). Codes from the Suzuki function field. IEEE Transactions on Information Theory, 50(12), 3298–3302.
  11. Moreno-Frías, M. A., & Rosales, J. C. (2019). Perfect numerical semigroups. Turkish Journal of Mathematics, 43, 1742–1754.
  12. Moreno-Frías, M.A., & Rosales, J. C. (2020). Perfect numerical semigroups with dimension three. Publicationes Mathematicae Debrecen, 97, 77–84.
  13. Rosales, J. C., & Garcia-Sanchez, P. A. (2009). Numerical Semigroups. Springer, New York.
  14. Smith, H. J. (2022). On isolated gaps in numerical semigroups. Turkish Journal of Mathematics, 46, 123–129.
  15. Stichtenoth, H. (2009). Algebraic Function Fields and Codes. Springer, Berlin.

Manuscript history

  • Received: 22 March 2023
  • Revised: 3 March 2024
  • Accepted: 8 March 2024
  • Online First: 12 March 2024

Copyright information

Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Zmmo, M., & Tutaş, N. (2024). Generalized perfect numerical semigroups. Notes on Number Theory and Discrete Mathematics, 30(1), 150-162, DOI: 10.7546/nntdm.2024.30.1.150-162.

Comments are closed.