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1 Introduction

In this work, N denotes the set of positive integers, and N0= N ∪ {0}. It can be easily seen that
N0 is a monoid by the operation +.

Let S be a submonoid of N0 such that H(S) = N0\S be a finite set, then S is called a
numerical semigroup. The number of elements of H(S) is called genus of S, and it is denoted by
g(S). The largest element of H(S) is called the Frobenius number of S and denoted by F (S).

The smallest integer x ∈ S such that x + n ∈ S for every n ∈ N0 is called the conductor of S.
The conductor of S is denoted by C(S). The elements of S which are smaller than C(S) are
called the small elements of S, and the number of the small elements of S is denoted by n(S).

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



For details on numerical semigroups, see [13]. If S has n = n(S) small elements, it is customary
to list them as s0 = 0 < s1 < · · · < sn−1 and write S = {s0 = 0, s1, . . . , sn−1, sn = C(S),→},
the arrow at the end meaning that all subsequent integers belong to S.

Moreno-Frias and Rosales introduce the concept of perfect numerical semigroup in [11]. It is
a class of numerical semigroups that comes from topology, precisely the concept of a perfect set.

Let S ⊆ N0 be a numerical semigroup and let h ∈ H(S). If {h− 1, h+ 1} ⊂ S, then h

is called an isolated gap of S. If S has no isolated gaps, then S is called a perfect numerical
semigroup.

For example, we take S = {0, 5, 7, 10,→} . Since 6 ∈ H(S) is an isolated gap, S is not a
perfect numerical semigroup. On the other hand, N = {0, 4, 5,→} has not an isolated gap and
N is a perfect numerical semigroup.

In [12], the authors characterize all perfect semigroups with embedding dimension three.
In [14], the author investigate some properties of isolated gaps of a numerical semigroup, and
they exhibit relations between the set of isolated gaps and the Apéry set. Using these properties,
the authors give methods for finding all isolated gaps of the semigroup of embedding dimensions
two and three.

Let S ⊆ Nd
0 be a monoid. If H(S) = Nd

0\S is a finite set, then S is called a generalized
numerical semigroup, and the cardinality of Nd

0\S is called as the genus of S. This is a natural
generalization of the concept of the numerical semigroup. Let Ng,d denote the number of genera-
lized numerical semigroups S ⊆ Nd

0 of genus g. In [6], the authors compute Ng,d for small values
of g, d and provide asymptotic bounds on Ng,d for large values of g, d.

Several distinct generalizations of numerical semigroups have been made and studied exten-
sively. For example, the concept of Weierstrass semigroup of d distinct rational point on an
algebraic curve is one of them, and it has attracted authors because of applications, see [1, 9, 10]

Many important results have been obtained by applying the Weierstrass semigroup on curves
to linear codes. In addition to the Hermitian curve, the Weierstrass semigroup of distinct rational
points was studied on the Suzuki and GK curves. The authors construct algebraic geometry codes
and improve the bounds on the minimum distance of the linear codes, d ≥ 2, see [2, 3, 7–10].

In this work, we search isolated gaps of generalized numerical semigroups S in Nd
0, d ≥ 2, and

study the generalized perfect numerical semigroups and we exhibit several examples. We examine
how the perfectness condition affects the generalizations of some numerical group families, a
special case is the Weierstrass semigroup of d distinct rational points.

The paper is organized as follows. In Section 2, we fix the notation that will be used throughout
the paper and we give the necessary background on the generalized numerical semigroups. In
Section 3, we deal with the isolated gaps of a generalized numerical semigroup, and we give
conditions for determining isolated gaps in Nd

0. The generalized perfect numerical semigroups
are explained in the same section and these semigroups are illustrated with several examples. In
Section 4, we investigate the effects of the perfectness condition on a Weierstrass semigroup of d
distinct rational points on a curve.
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2 Background

The purpose of this section is to recall the basic properties of a generalized numerical semigroup.
These properties are generalizations of their counterparts in the classical numerical semigroup
theory.

Let ei denote the element of Nd
0 such that its i-th component is 1 and other components are

zero, for i = 1, . . . , d. If z ∈ Nd
0, then the i-th component is usually denoted by z(i). We express

the natural partial ordering on Nd
0 by ≤ . i.e., x, y ∈ Nd

0, x ≤ y if and only if x(i) ≤ y(i) for every
i = 1, . . . , d.

For x ∈ Nd
0 and A ⊆ Nd

0, we define x+ A = {x+ a : a ∈ A} .
If A ⊆ Nd

0, then the submonoid of Nd
0 generated by A is

⟨A⟩ = {λ1a1 + ...+ λnan : λ1, . . . , λn ∈ N0, a1, . . . , an ∈ A, n ∈ N0}.

If S ⊆ Nd
0 is a monoid and if H(S) = Nd

0\S is a finite set, then S is called a generalized
numerical semigroup. The elements in H(S) are called gaps of S and the number g(S) = #H(S)

is called the genus of S.
If S is a generalized numerical semigroup and S = ⟨A⟩, then A is called a generator system

of S, and we say S is generated by A. If A is a generator system of S and if any proper subset of
A is not a generator system, then A is called the minimal generator system of S, and it is denoted
by G(S). Every generalized numerical semigroup has a finite minimal generator system and such
set is also unique, for details we refer [4].

For t ∈ Nd
0, we define the π(t) = {n ∈ Nd

0 : n ≤ t}, where ≤ denotes the natural partial order
in Nd

0. Recall that for every t ∈ Nd
0, the set π(t) is finite.

Lemma 2.1. ([4]) Let S ⊆ Nd
0 be a monoid. Then S is a generalized numerical semigroup if and

only if there exists t ∈ Nd
0 such that for all elements s /∈ π(t), then s ∈ S.

Lemma 2.1 is useful for the characterization of a generator system of a generalized numerical
semigroup in Nd

0.

Theorem 2.1. ([4]) Let d ≥ 2 and let S = ⟨A⟩ be the monoid generated by a set A ⊆ Nd
0. Then

S is a generalized numerical semigroup if and only if the set A fulfills each one of the following
conditions:

1. For all j = 1, 2, . . . , d there exist a
(j)
1 ej, a

(j)
2 ej, . . . , a

(j)
rj ej ∈ A, rj ∈ N such that

gcd(a
(j)
1 , a

(j)
2 , . . . , a

(j)
rj ) = 1 (that is, the elements a

(j)
i , 1 ≤ i ≤ rj generate a numerical

semigroup).
2. For every i, k; 1 ≤ i < k ≤ d there exist xik, xki ∈ A such that xik = ei + n

(k)
i ek and

xki = ek + n
(i)
k ei with n

(k)
i , n

(i)
k ∈ N0.

Even if all generalized numerical semigroups are finitely generated submonoids of Nd
0, for

d > 1, not all finitely generated submonoids of Nd
0 are generalized numerical semigroups, for

details see [4].
The most important difference between numerical semigroups and generalized numerical

semigroups becomes apparent when we consider the Frobenius element and generators. In Nd
0
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there is not a natural total order so it is not clear how to define the Frobenius element for a
generalized numerical semigroups.

A total order <m in Nd
0 is called a monomial order if it satisfies:

1) If v, w ∈ Nd
0 with v <m w, then v + u <m w + u for every u ∈ Nd

0 .
2) If v ∈ Nd

0 and v ̸= 0, then 0 <m v.

If “<m ” is replaced by “≺ ” and the condition (1) is replaced with the condition “ If v, w ∈ Nd
0

with v ≺ w, then v ≺ w + u for every u ∈ Nd
0 ”, then ≺ is called a relaxed monomial order.

For v, w ∈ Nd
0, v ≺ w with respect to the lexicographic order if and only if the first nonzero

coordinate of w − v is positive. The lexicographic order is a relaxed monomial order, it is also a
monomial order.

Let S ⊆ Nd
0 be a generalized numerical semigroup, and H(S) be the set of gaps of S. Given

a relaxed monomial order ≺ in Nd
0, we define the greatest element in H(S) with respect to ≺ as

the Frobenius element of S and it is denoted by F (S)≺. The smallest nonzero element of S with
respect to ≺ is called multiplicity of S, and denoted by m(S)≺.

The Frobenius element of a generalized numerical semigroup is uniquely determined with
respect to the defined relaxed monomial order, see [5, 6].

Let S ⊆ Nd
0 be a monoid and n ∈ S. The Apéry set of S with respect to n is defined by

Ap(S,n) = {s ∈ S : s− n /∈ S}

with s− n being the difference in Zd
0.

3 Main results

In this section, our aim is to search for isolated gaps of a generalized numerical semigroup S

in Nd
0, d ≥ 2, and examine some properties of the generalized perfect numerical semigroups.

Furthermore, we illustrate our results with some interesting examples.

Definition 3.1. Let S ⊆ Nd
0 be a generalized numerical semigroup, d ≥ 1, and h ∈ H(S). If for

each j ∈ {1, . . . , d} ,
{h− ej, h+ ej} ∩ Nd

0 ⊂ S,

then h is called an isolated gap of S and the set of isolated gaps of S is denoted by iso(S). If
iso(S) is the empty set, then S is called a generalized perfect numerical semigroup in Nd

0.

First, we consider the case of d = 2. Let S ⊆ N2
0 be a generalized numerical semigroup

generated by A. There exist a(1)1 e1, a
(1)
2 e1, . . . , a

(1)
r e1, a

(2)
1 e2, a

(2)
2 e2, . . . , a

(2)
r e2 ∈ A, such that

gcd(a
(1)
1 , a

(1)
2 , . . . , a

(1)
r ) = 1 and gcd(a

(2)
1 , a

(2)
2 , . . . , a

(2)
r ) = 1, by Theorem 2.1.

Let S1 = ⟨a(1)1 , a
(1)
2 , . . . , a

(1)
r ⟩, S2 = ⟨a(2)1 , a

(2)
2 , . . . , a

(2)
r ⟩. Hence, we obtain that

N2
0 = {S1 × S2} ∪ {H(S1)× S2} ∪ {S1 ×H(S2)} ∪ {H(S1)×H(S2)} .

If x ∈ S1 and y ∈ S2, then (x, 0), (0, y) ∈ S and we get (x, y) ∈ S1 × S2 ⊂ S.

Here, we note that H(S1)×H(S2) has important role (contains generators) for the generalization
of the Weierstrass semigroup, see [8–10].

Let S ⊆ N2
0 be submonoid with the gap set H(S) = N2

0\S and h = (i, j) ∈ H(S). If
{(i, j − 1), (i, j + 1), (i− 1, j), (i+ 1, j)} ∩ N2

0 ⊂ S, then h is an isolated gap of S.
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Example 3.1. Let S ⊆ N2
0 be a generalized numerical semigroup with the gap set H(S) =

{(1, 0), (1, 1), (0, 1)}. In this case, G(S) = {(0, 2), (0, 3), (1, 2), (1, 3), (2, 0), (2, 1), (3, 0),
(3, 1)} is the minimal generator system of S. Each h ∈ H(S) is not an isolated gap, so S is a
generalized perfect numerical semigroup.

Remark 3.2. The semigroup S given in Example 3.1 has not isolated gaps, but the numerical
semigroups S1 and S2 have isolated gaps. Thus, a generalized numerical semigroup can be
perfect even though the component semigroups (S1 and S2) are not perfect.

Example 3.3. Let S ⊆ N2
0 be a generalized numerical semigroup with the gap set H(S) =

{(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 5), (2, 1), (3, 1), (5, 1)}. In this case, G(S) = {(2, 0),
(0, 2), (3, 0), (0, 3), (1, 4), (4, 1)} is the minimal generator system of S. Thus, (1, 5), (5, 1) ∈
H(S) are the isolated gaps of S. Therefore, S is not a generalized perfect numerical semigroup.
In Figure 1, the blue colored dots are elements of S, the red colored dots are gaps of S, the black
colored dots are the isolated gaps of S.

Figure 1. The generalized numerical semigroup in Example 3.3

Example 3.4. Let S ⊆ N2
0 be a generalized numerical semigroup with the minimal generator

system G(S) = {(0, 2), (0, 5), (3, 0), (4, 0), (1, 4), (4, 1)}. In this case,

H(S) =


(0, 1), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (1, 5), (1, 7), (2, 0), (2, 1), (2, 2),

(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 9), (2, 11), (3, 1), (3, 3),

(5, 0), (5, 1), (5, 2), (5, 3), (6, 1), (6, 3), (9, 1), (9, 3)


is the gap set of S. Here, iso(S) = {(2, 9), (2, 11), (9, 1), (9, 3)}, and considering ≺ the
lexicographic order the multiplicity of S is m(S)≺ = (0, 2), and

Ap(S, (0, 2)) =


(0, 0), (3, 0), (4, 0), (0, 5), (1, 4), (1, 9),

(2, 8), (2, 11), (3, 5), (4, 1)(5, 4), (5, 5),

(6, 5), (9, 5), (7, 1), (8, 1)

∪{(n, 0), (m, 1) : n ≥ 6,m ≥ 10} .

The Frobenius element of S is F (S)≺ = (9, 3). Since {(9, 2), (8, 3)}∩N2
0 ⊂ S, we get that F (S)≺

is an isolated gap of S. In Figure 2, the green colored dots are the minimal generators of S, the
red colored dots are gaps of S, the black colored dots are the isolated gaps of S, and the purple
colored dots are the elements of Ap(S, (0, 2)), not belonging to the set of minimal generators.
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Figure 2. The generalized numerical semigroup with generator set G(S) in Example 3.4.

Theorem 3.5. Let S = ⟨(a, 0), (1, b), (0, 1), (2, 0)⟩ be a generalized numerical semigroup, where
a, b ∈ N, a is odd and b ≥ 2. Then, F (S)≺ = (a − 2, b − 1) with respect to lexicographic order
and S is a generalized perfect numerical semigroup.

Proof. First, we will show that (a−2, b−1) is the largest element of H(S). If (a−2, b−1) ∈ S,
then there are α, β, γ, λ ∈ N0 such that (a − 2, b − 1) = α(a, 0) + β(1, b) + γ(0, 1) + λ(2, 0).
In the case of α > 0 or β > 0, we get a =−β + 2λ+ 2

α− 1
< 0, b = −γ + 1

β − 1
< 0, but these contradict

a, b > 0. If α = β = 0, then 2λ+ 2 = a, this is a contradiction since a is odd.
Suppose that h = (h(1), h(2)) ∈ H(S) and (a − 2, b − 1) ≺ h with respect to lexicographic

order. We obtain (h(1), h(2))− (a− 2, b− 1) = (h(1) − a+ 2, h(2) − b+ 1). Hence,
i) If h(1)−a+2 = 0, then h(1) = a−2 and h(2) > b−1. Then, h = (a−2, 0)+(0, h(2)) ∈ S.

ii) If h(1) > a− 2, then (h(1), 0) ∈ S. In particular h = (h(1), 0) + (0, h(2)) ∈ S.
There are contradictions in both cases. Now, we will show that none of the elements of H(S) are
isolated points. Let define the set

K = {(x, t) : 1 ≤ x ≤ a− 2, 0 ≤ t ≤ b− 1 and x is odd} .

Let h = (h(1), h(2)) ∈ H(S) and h /∈ K. Note that h(1) can not be even. Then,
h = (h(1), 0) + (0, h(2)), where h(1) > a − 2 and h(2) > b − 1. Since F (S)≺ ≺ h, it is a
contradiction to h ∈ H(S). Therefore, H(S) ⊆ K. It is clear that K ⊆ H(S). Hence, we obtain
H(S) = K.

Assume that h ∈ H(S) is an isolated points of S. Since h(1) ± 1 are even numbers,
(h(1)± 1, h(2)) ∈ S. It can be seen that at least one of (h(1), h(2)± 1) is an element of H(S). This
is a contradiction.

Corollary 3.1. Let S = ⟨(a, 0), (1, b), (0, 1), (2, 0)⟩ be a generalized numerical semigroup, where
a, b ∈ N, a is odd and b ≥ 2 and considering ≺ the lexicographic order. Then, the following
statements hold:

1. m(S)≺ = (0, 1), g(S)≺ = b(a−1
2
).

2. Ap(S,m(S)≺) =
{
(0, 0), (2k, 0), (2k − 1, b), (a+ n, 0) : 1 ≤ k ≤ a−1

2
, n ∈ N0

}
.

Proof. The proof follows from Theorem 3.5.
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Example 3.6. Let S ⊆ N2
0 be a generalized numerical semigroup with the minimal generator

system G(S) = {(2, 0), (13, 0), (0, 1), (1, 8)}. In this case, m(S)≺ = (0, 1), g(S) = 42 and

1. H(S) = {(x, t) : 1 ≤ x ≤ 11, 0 ≤ t ≤ 7 and x is odd}.

2. Ap(S,m(S)≺) = {(0, 0), (2k, 0), (2k − 1, 8), (13 + n, 0) : 1 ≤ k ≤ 6, n ∈ N0}.

3. S is generalized perfect numerical semigroup.

Example 3.7. It is easy to see that (2, 1) is an isolated gap of S = ⟨(a, 0), (0, a), (2, 0), (0, 2),
(1, 1)⟩, where 3 ≤ a ∈ N and a is odd . Then, S is not generalized perfect numerical semigroup.

Example 3.8. Let S ⊆ N4
0, be a generalized numerical semigroup with the minimal generator

system A = {(1, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 0, 1, 0), (0, 0, 2, 1), (0, 0, 0, 2),
(0, 0, 1, 3), (0, 0, 0, 5)}. Then, H(S) = {(0, 0, 0, 1), (0, 0, 0, 3), (0, 0, 1, 1))}. Thus iso(S) =

{(0, 0, 0, 1), (0, 0, 0, 3)} and S is not perfect.

Proposition 3.9. Let S ⊂ Nd
0 be a generalized numerical semigroup with the Frobenius element

F (S)≺ = (x(1), . . . , x(d)) according to a fixed relaxed mononomial order. F (S)≺ is an isolated
gap of S if and only if

{F (S)≺ − ej : 1 ≤ j ≤ d} ∩ Nd
0 ⊂ S. (1)

Proof. (:⇒) Suppose F (S)≺ be an isolated gap of S. By the definition of the concept of isolated
gap, we have {F (S)≺ ± ej : 1 ≤ j ≤ d} ∩ Nd

0 ⊂ S. Thus, the assertions hold.

(⇐:) Let F (S)≺ be a Frobenius element and (1) hold. If {F (S)≺ + ej : 1 ≤ j ≤ d} ∩ Nd
0 ⊂ S

is not true, then F (S)≺ + ej becomes a gap, for some j ≤ d, and this is a contradiction with the
definition of the Frobenius element. Therefore, F (S)≺ is an isolated gap.

Example 3.10. Let S ⊆ N3
0 be a generalized numerical semigroup with minimal generator system

A =

{
(2, 0, 0) , (3, 0, 0) , (0, 2, 0) , (0, 3, 0) , (0, 0, 2) , (0, 0, 3) ,

(1, 0, 3) , (3, 0, 1) , (1, 2, 0) , (2, 1, 0) , (0, 1, 3) , (0, 3, 1)

}
.

In this case, the gap set of S is

H(S) =



(1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 0) , (0, 1, 1) , (1, 0, 1) ,

(2, 0, 1) , (1, 0, 2) , (3, 1, 0) , (1, 3, 0) , (0, 2, 1) , (0, 1, 2) ,

(1, 1, 1) , (1, 1, 2) , (1, 1, 3) , (1, 1, 4) , (1, 1, 5) , (1, 1, 7) ,

(1, 2, 1) , (1, 3, 1) , (1, 3, 2) , (1, 4, 1) , (1, 6, 1) , (2, 1, 1) ,

(2, 2, 1) , (3, 1, 1) , (3, 1, 2) , (4, 1, 1) , (4, 0, 1) , (1, 0, 4) ,

(0, 4, 1) , (0, 1, 4) , (6, 1, 1)


.

Then, iso(S) = {(1, 1, 7) , (1, 6, 1) , (6, 1, 1)}. With respect to lexicographic order, the Frobenius
element of S is F (S)≺ = (6, 1, 1). Hence, (6, 1, 1) is an isolated gap of S since {(5, 1, 1), (6, 0, 1),
(6, 1, 0)} ∩ N3

0 ⊂ S.

156



Proposition 3.11. Let S ⊆ Nd
0 be a generalized numerical semigroup, h = (x(1), x(2), . . . , x(d))

be a gap of S with x(j1) · x(j2) · · ·x(jr) ̸= 0, 1 ≤ r ≤ d. If h is an isolated gap of S, then
{ej1 , ej2 , . . . , ejr} ⊆ H(S).

Proof. For a fixed k such that 1 ≤ k ≤ r, we have x(jk) ̸= 0 by the assumption. If h ∈ iso(S),

then {(x(1), x(2), . . . , x(jk−1), x(jk) ± 1, x(jk+1), . . . , x(d))} ∩ Nd
0 ⊂ S. Then we obtain

(x(1), . . . , x(d))︸ ︷︷ ︸
∈H(S)

− (x(1), . . . , x(jk−1), x(jk) − 1, x(jk+1), . . . , x(d))︸ ︷︷ ︸
∈S

= ejk ∈ H(S),

otherwise h ̸∈ H(S). The proof is completed.

Definition 3.2. Let S ⊆ Nd
0 be a generalized numerical semigroup generated by A and let

Sk := ⟨a(k)1 , a
(k)
2 , . . . , a

(k)
r ⟩, where a(k)1 ek, . . . , a

(k)
r ek ∈ A and gcd(a

(k)
1 , . . . , a

(k)
r )=1, k=1, . . . , d.

For each k, we define the set Ik as follows:

Ik =
{
x = (x(1), . . . , x(d−1)) ∈ Nd−1

0 : x̃ = (x(1), . . . , x(k−1), z, x(k), . . . , x(d−1)) ∈ S, for all z ∈ Sk

}
.

Proposition 3.12. Ik is a generalized numerical semigroup on Nd−1
0 .

Proof. Ik ⊂ Nd−1
0 . Since the operation “+” is associative on S, it is also associative on Ik. Let

x, y ∈ Ik. Then for each s ∈ Sk, we will show that

γ := (x(1) + y(1), . . . , x(k−1) + y(k−1), s, x(k) + y(k), . . . , x(d−1) + y(d−1)) ∈ S.

There exist z, t ∈ Sk such that s = z + t. Hence, x̃ = (x(1), . . . , x(k−1), z, x(k), . . . , x(d−1)) ∈ S

and ỹ = (y(1), . . . , y(k−1), t, y(k), . . . , y(d−1)) ∈ S. Since S is a generalized numerical semigroup,
we get x̃ + ỹ = γ ∈ S. Therefore, x + y ∈ Ik. If α = (z(1), z(2), . . . , z(d−1)) ∈ Nd−1

0 \Ik,
then there exists u ∈ Sk such that α̃=(z(1), . . . , z(k−1), u, z(k ), . . . , z(d−1)) /∈ S, where α̃(k) = u.
Hence, α̃ ∈ H(S) and we obtain that H(Ik) is a finite set since H(S) is finite. Then Ik is a
generalized numerical semigroup on Nd−1

0 .

Proposition 3.13. Let S ⊆ Nd
0 be a generalized numerical semigroup and h = (x(1), . . . , x(d))

be a gap of S. Then, h is an isolated gap of S if there exists an integer k, with 1 ≤ k ≤ d, such
that the following statements hold:

1. (x(1), . . . , x(k−1), x(k+1), . . . , x(d)) ∈ Ik,

2. ej + x(k)ek ∈ S, for each j = 1, 2, . . . , d.

3. x(k) ∈ iso(Sk).

Proof. By the first condition, and since h ∈ H(S), we have

h = (x(1), . . . , x(d)) = (x(1), . . . , x(k−1), 0, x(k+1) . . . , x(d))︸ ︷︷ ︸
∈S

+ (0, , . . . , x(k), . . . , 0).

Hence x(k)ek /∈ S, otherwise h ∈ S. Then x(k) /∈ Sk. Since x(k) ∈ iso(Sk), we get that{
x(k) ± 1

}
∩ N0 ⊂ Sk. Therefore,

(x(1), . . . , x(k) ± 1, . . . , x(d)) = (x(1), . . . , x(k−1), 0, x(k), . . . , x(d)) + (0, . . . , x(k) ± 1, . . . , 0) ∈ S.
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Similarly,

{(x(1) ± 1, . . . , x(k), . . . , x(d)), . . . , (x(1), x(2), . . . , x(k), . . . , x(d) ± 1)} ∩ Nd
0 ⊂ S.

In fact, by the second condition, we get

(x(1) ± 1, . . . , x(k), . . . , x(d)) = (x(1), . . . , x(k−1), 0, x(k), . . . , x(d)) + (±1, . . . , x(k), . . . , 0) ∈ S.

The assertion holds for the other elements, the proof follows from using the same argument. Thus,
h is an isolated gap of S.

Proposition 3.14. Let S ⊆ Nd
0 be a generalized numerical semigroup, h = (x(1), . . . , x(d)) be a

gap of S. Then, h is an isolated gap of S if there exists an integer k, with 1 ≤ k ≤ d, such that
the following statements hold:

1.
(
x(1), . . . , x(k−1), x(k+1), . . . , x(d)

)
/∈ Ik.

2.
{
x(k)ek,

(
x(k) − 2

)
ek
}
⊂ S.

3. (x(1), . . . , x(k−1), 0, x(k+1), . . . , x(d)) ∈ iso(S).

Proof. By the first condition,
(
x(1), . . . , x(k−1), x(k+1), . . . , x(d)

)
∈ H(Ik) and there exists t ∈ Sk

such that (x(1), . . . , x(k−1), t, x(k+1), . . . , x(d)) /∈ S. Therefore, we get(
x(1), . . . , x(k−1), t, x(k+1), . . . , x(d)

)︸ ︷︷ ︸
∈H(S)

− tek︸︷︷︸
∈S

=
(
x(1), . . . , x(k−1), 0, x(k+1), . . . , x(d)

)
∈ H(S).

Hence,
{(x(1) ± 1, . . . , x(k−1), 0, x(k+1), . . . , x(d)), (x(1), x(2) ± 1, . . . , x(k−1), 0, x(k+1), . . . , x(d)),

. . . , (x(1), x(2), . . . , x(k−1), 0, x(k+1), . . . , x(d)± 1), (x(1), . . . , x(k−1), 1, x(k+1), . . . , x(d))}∩Nd
0

is contained in S by the third condition, and we get the following statements

(x(1) ± 1, x(2), . . . , x(k−1), 0, x(k+1), . . . , x(d)) + x(k)ek = (x(1) ± 1, x(2), . . . , x(d)) ∈ S,

(x(1), x(2) ± 1, . . . , x(k−1), 0, x(k+1), . . . , x(d)) + x(k)ek = (x(1), x(2) ± 1, . . . , x(d)) ∈ S

. . .

(x(1), x(2), . . . , x(k−1), 0, x(k+1), . . . , x(d) ± 1) + x(k)ek = (x(1), . . . , x(d−1), x(d) ± 1),

(x(1), . . . , x(k−1), 1, x(k+1), . . . , x(d)) + x(k)ek = (x(1), . . . , x(k−1), x(k) + 1, x(k+1), . . . , x(d)) ∈ S.

Since
(
x(k) − 2

)
ek ∈ S, similarly, we obtain

(x(1), . . . , x(k−1), 1, x(k+1), . . . , x(d)) +
(
x(k) − 2

)
ek = (x(1), . . . , x(k) − 1, x(k+1), . . . , x(d)) ∈ S.

Thus, h is an isolated gap of S.

Proposition 3.15. Let S1, S2 ⊆ Nd
0 be generalized numerical semigroups. Then, we have

iso(S1 ∩ S2) ⊆ iso(S1) ∪ iso(S2).

Proof. Let us assume that h ∈ iso(S1 ∩ S2). Then the assertion can be proved as follows:

h ∈ iso(S1 ∩ S2) ⇒ h ∈ H(S1 ∩ S2) and {h± ej : 1 ≤ j ≤ d} ∩ Nd
0 ⊂ S1 ∩ S2

⇒ h ∈ H(S1) ∪H(S2) and {h± ej : 1 ≤ j ≤ d} ∩ Nd
0 ⊂ Si, for i = 1, 2.

⇒ h ∈ iso(S1) ∪ iso(S2).
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Remark 3.16. For two generalized numerical semigroups S1 and S2, it is known that S1 ∪ S2

may not be a generalized numerical semigroup. If we consider S1, S2 as generalized numerical
sets (subset of Nd

0 that contains 0 and has a finite complement in Nd
0), then we observe that

H(S1 ∪ S2) = H(S1) ∩H(S2), and

h ∈ iso(S1) ∩ iso(S2) ⇒ h ∈ H(S1 ∪ S2) ∩ iso(S1) ∩ iso(S2)

⇒ {h± ej : 1 ≤ j ≤ d} ∩ Nd
0 ⊂ Si, i = 1, 2 ⇒ h ∈ iso(S1 ∪ S2).

Therefore, we have iso(S1) ∩ iso(S2) ⊆ iso(S1 ∪ S2).

Theorem 3.17. If S1, S2 ⊆ Nd
0 are generalized perfect numerical semigroups, then S1 ∩ S2 is

also generalized perfect numerical semigroup.

Proof. It is known that the intersection of two generalized numerical semigroups is again
generalized numerical semigroup. The rest of the proof follows from Proposition 3.15.

The opposite side of the theorem is not true in Nd
0, see Example 3.18.

Example 3.18. It is shown that S1 ⊆ N2
0 with gap set H(S1) = {(0, 1), (1, 0), (1, 1), (1, 2),

(1, 3), (1, 5), (2, 1), (3, 1), (5, 1)} is not a generalized perfect numerical semigroup, since (1, 5),
(5, 1) are the isolated gaps of S1.

Let S2 ⊆ N2
0 be a generalized numerical semigroup with the gap set H(S2) = {(1, 0), (2, 0),

(5, 0), (0, 1), (1, 1), (4, 1), (0, 2), (2, 2), (3, 2), (2, 3), (1, 4), (0, 5)}. In this case, (5, 0), (0, 5),
(1, 4), (4, 1) ∈ H(S2) are the isolated gaps of S2. Therefore, S2 is not a generalized perfect
numerical semigroup. Now, it is not difficult to show that none of the gaps of S1∩S2 are isolated.
Hence, S1 ∩ S2 is a generalized perfect numerical semigroup.

4 Generalized Weierstrass semigroup and perfectness

In this section, we consider the Weierstrass semigroup of d rational points which is an important
family because of its applications. It is a generalized numerical semigroup and we want to
investigate the behavior of the perfectness condition.

Let X be a smooth, projective, and absolutely irreducible curve over a finite field F. Let d
be a positive integer and suppose |F | ≥ d. For a function f ∈ F (X), the zero divisor and the
pole divisor of f are denoted by (f)0 and (f)∞, respectively. Let L(D) denote the set of rational
functions f on X with (f) ≥ −D together with the zero function, where D is a divisor on X.

Given d distinct rational points Q1, . . . , Qd on X, the Weierstrass semigroup of Q1, . . . , Qd is
defined by

S(Q1, . . . , Qd) := {(α1, . . . , αd) ∈ Nd
0 : there exists a function f, (f)∞ =

d∑
i=1

αiQi} (2)

and the gap set of Q1, . . . , Qd is defined by H(Q1, . . . , Qd) = Nd
0\S(Q1, . . . , Qd), d ≥ 1.

The structure of S(Q1, . . . , Qd) has been studied from various aspects, for instance it is
studied the minimal generator system and the genus, for details see [2, 7–9].

From now on, Q1, . . . , Qd will be rational points on the curve X.
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Proposition 4.1. ([2], Lemma 2.8) For (a1, . . . , ad), (b1, . . . , bd) ∈ S(Q1, . . . , Qd), let qi :=

max(ai, bi), for i = 1, . . . , d. Then (q1, . . . , qd) ∈ S(Q1, . . . , Qd).

Theorem 4.2. For each i = 1, . . . , d, if S(Qi) is perfect numerical semigroup, then S(Q1, . . . , Qd)

is a generalized perfect numerical semigroup.

Proof. Let L be the set of isolated gaps of S(Q1, . . . , Qd) which have at least two nonzero
components. First, we observe that iso(S(Q1, . . . , Qd)) ⊆ ∪d

i=1 iso(S(Qi))ei ∪ L. Since S(Qi)

is a perfect numerical semigroup for each i = 1, . . . , d, we get iso(S(Q1, . . . , Qd)) = L.
Take h = (h1, . . . , hd) ∈ L with h(i1) · · ·h(ir) ̸= 0, 2 < r ≤ d. Hence, h− ei1 , . . . , h− eir ∈

S(Q1, . . . , Qd), by Proposition 4.1, we obtain h ∈ S(Q1, . . . , Qd), but this is a contradiction.

The next corollary follows from the proof of the Theorem 4.2.

Corollary 4.1. iso(S(Q1, . . . , Qd)) ⊆ ∪d
i=1 iso(S(Qi))ei.

Proposition 4.3. Let Q1, . . . , Qd be rational points on a Hermitian curve defined by
yq + y = xq+1 over Fq2 , where Fq2 denotes the finite field with q2 elements. Isolated gaps of the
Weierstrass semigroup S(Q1, . . . , Qd) constitute the set {F (S(Qi))ei : i = 1, . . . , d}, where
F (S(Qi)) = (q − 2)(q + 1) + 1 is the Frobenius number of S(Qi).

Proof. It is well-known that the genus of Hermitian curve is g =
q(q − 1)

2
, and the curve has

q3 +1 rational points. The group of automorphisms of the Hermitian curve acts doubly transitive
on the set of rational points. Therefore, the Weierstrass semigroup of two distinct rational points
on the curve is independent of choosing of points. Let S(Qi) be the Weierstrass semigroup of
Qi, i = 1, . . . , d. Then, S(Qi) = ⟨q, q + 1⟩, and the Weierstrass gap set H(Qi) consists of the
following numbers:

1 2 · · · q − 2 q − 1

(q + 1) + 1 (q + 1) + 2 (q + 1) + (q − 2)
...

...
(q − 3)(q + 1) + 1 (q − 3)(q + 1) + 2

(q − 2)(q + 1) + 1

Hence, the Frobenius number F (S(Qi)) = (q − 2)(q + 1) + 1. By Corollary 3.5 in [14], a
numerical semigroup generated by two consecutive integers has exactly one isolated gap and this
is the Frobenius number of S(Qi). Since F (S(Qi)) + 1 = 2g, by Theorem 1.5.17 in [15], we
obtain that

L((F (S(Qi))− 1)Qi +Qj) ̸= L(F (S(Qi))Qi +Qj) ̸= L(F (S(Qi))Qi).

Then F (S(Qi))ei + ej ∈ S(Q1, . . . , Qd), for all j.

Proposition 4.4. The Suzuki curve S over the field Fq defined by the equation

yq − y = xq0(xq − x),

where q0 = 2t, q = 22t+1 for some positive integer t, and Fq is the finite field with q elements.
Isolated gaps of the Weierstrass semigroup S(Q1, Q2) are (2q0(q−1)−1, 0), (0, 2q0(q−1)−1),

where 2q0(q − 1)− 1 is the Frobenius number of S(Qi), i = 1, 2.
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Proof. The curve has exactly q2 + 1 rational points, and the genus of the curve is g = q0(q − 1).

The group of automorphisms of the Suzuki curve acts doubly transitive on the set of rational
points. Therefore, the Weierstrass semigroups of two distinct rational points on the Suzuki
curve is independent of choosing of points. Let Q1, Q2 be rational points of the Suzuki curve.
The Weierstrass semigroup of Qi is S(Qi) = ⟨q, q + q0, q + 2q0, q + 2q0 + 1⟩, i = 1, 2,

and F (S(Qi)) = 2g − 1, see Lemma 3.1 in [10]. Hence, S(Qi) is a symmetric numerical
semigroup and F (S(Qi)) − 1 ∈ S(Qi), by Proposition 4.4 and Corollary 4.5 in [13]. Clearly,
2g ∈ S(Qi). Then, F (S(Qi)) is an isolated point of S(Qi). By Theorem 3.3 in [10], we see
that (1, 2q0(q − 1)− 1) ∈ S(Q1, Q2). Note that 2q0(q − 1)− 1 = min{j : (1, j) ∈ S(Q1, Q2)}.
Similiarly, we have (2q0(q−1)−1, 1) ∈ S(Q1, Q2). Hence, (2q0(q−1)−1, 0), (0, 2q0(q−1)−1)

are isolated gaps of S(Q1, Q2).

Example 4.5. Let S be Suzuki curve over the field F8 defined by y8− y = x2(x8−x). Let Q1, Q2

be rational points on S. Then S(Qi) = ⟨8, 10, 12, 13⟩ and iso(S(Qi)) = {9, 11, 17, 19, 27}, for
i = 1, 2. By Theorem 3.3 and Example 3.4 in [10], the generators of the Weierstrass semigroup
S(Q1, Q2) is Γ ∪ (⟨8, 10, 12, 13⟩ × {0}) ∪ ({0} × ⟨8, 10, 12, 13⟩), where

Γ :=

{
(1, 27), (2, 19), (3, 11), (4, 17), (5, 9), (6, 15), (7, 7),

(27, 1), (19, 2), (11, 3), (17, 4), (9, 5), (15, 6), (14, 14)

}
.

Hence, we have iso(S(Q1, Q2)) = {(0, 27), (27, 0)}. For details on S(Q1, Q2), we refer to [1,10].
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