Generalization of the 2-Fibonacci sequences and their Binet formula

Timmy Ma, Richard Vernon and Gurdial Arora
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 1, Pages 67–80
DOI: 10.7546/nntdm.2024.30.1.67-80
Full paper (PDF, 256 Kb)

Details

Authors and affiliations

Timmy Ma
Department of Mathematics, Xavier University of Louisiana
1 Drexel Drive, New Orleans, LA 70125, United States

Richard Vernon
Department of Mathematics, Xavier University of Louisiana
1 Drexel Drive, New Orleans, LA 70125, United States

Gurdial Arora
Department of Mathematics, Xavier University of Louisiana
1 Drexel Drive, New Orleans, LA 70125, United States

Abstract

We will explore the generalization of the four different 2-Fibonacci sequences defined by Atanassov. In particular, we will define recurrence relations to generate each part of a 2-Fibonacci sequence, discuss the generating function and Binet formula of each of these sequences, and provide the necessary and sufficient conditions to obtain each type of Binet formula.

Keywords

  • Fibonacci sequences
  • Binet formula
  • Bi-periodic Fibonacci sequence
  • 2-Fibonacci sequences

2020 Mathematics Subject Classification

  • 11B39

References

  1. Ando, S., & Hayashi, M. (1997). Counting the number of equivalence classes of (m, F) sequences and their generalizations. The Fibonacci Quarterly, 35(1), 3–8.
  2. Atanassov, K. (1986). On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, 24(4), 362–365.
  3. Atanassov, K. (2006). A new direction of Fibonacci sequence modification. Notes on Number Theory and Discrete Mathematics, 12(1), 25–32.
  4. Atanassov, K. (2010). Combined 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 16(2), 24–28.
  5. Atanassov, K. (2014). A set of Lucas sequences. Notes on Number Theory and Discrete Mathematics, 20(2), 1–5.
  6. Atanassov, K. (2022). Two 2-Fibonacci sequences generated by a mixed scheme. Part 1. Notes on Number Theory and Discrete Mathematics, 28(2), 331–338.
  7. Atanassov, K., Atanassova, L., & Sasselov, D. (1985). A new perspective to the
    generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23(1), 21–28.
  8. Atanassov, K., Atanassova, V., Shannon, A. G., & Turner, J. (2002). New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
  9. Badshah, V., & Khan, I. (2009). New generalization of the Fibonacci sequence in case of 4-order recurrence equations. International Journal of Theoretical & Applied Sciences, 1(2), 93–96.
  10. Bilgici, G. (2014). New generalizations of Fibonacci and Lucas sequences. Applied
    Mathematical Sciences, 8(29), 1429–1437.
  11. Dantchev, S. (1998). A closed form of the (2, F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 36(5), 448–451.
  12. Edson, M., & Yayenie, O. (2009). A new generalization of Fibonacci sequence & extended Binet’s formula. Integers, 9(6), 639–654.
  13. Falcon, S., & Plaza, A. (2007). The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons & Fractals, 33(1), 38–49.
  14. Godase, M. (2021). Study of Generalized Fibonacci Sequences. Doctoral dissertation. Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.
  15. Harne, S., Singh, B., & Pal, S. (2014). Generalized Fibonacci-like sequence and Fibonacci sequence. International Journal of Contemporary Mathematical Sciences, 9(5), 235–241.
  16. Horadam, A. (1961). A generalized Fibonacci sequence. The American Mathematical Monthly, 68(5), 455–459.
  17. Ipek, A. (2017). On (p, q)-Fibonacci quaternions and their Binet formulas, generating functions and certain binomial sums. Advances in Applied Clifford Algebras, 27, 1343–1351.
  18. Jaiswal, D. (1969). On a generalized Fibonacci sequence. Labdev Journal of Science and Technology. Part A, 7, 67–71.
  19. Kim, H. S., Neggers, J., & Park, C. (2018). On generalized Fibonacci k-sequences and Fibonacci k-numbers. Journal of Computational Analysis & Applications, 24(5), 805–814.
  20. Klein, S. (1991). Combinatorial representation of generalized Fibonacci numbers. The Fibonacci Quarterly, 29(2), 124–131.
  21. Lee, G. Y., Lee, S. G., Kim, J. S., & Shin, H. K. (2001). The Binet formula and
    representations of k-generalized Fibonacci numbers. The Fibonacci Quarterly, 39(2), 158–164.
  22. Lee, G. Y., Lee, S. G., & Shin, H. G. (1997). On the k-generalized Fibonacci matrix Qk. Linear Algebra and Its Applications, 251, 73–88.
  23. Roy, S. (2006). On the solution of quartic and cubic equations. IETE Journal of Education, 47(2), 91–95.
  24. Spickerman, W., Joyner, R., & Creech, R. (1992). On the (2, F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 30(4), 310–314.
  25. Vernon, R. P., Arora, G., & Unnithan, S. (2020). A Study of Linear Recurrence Relations with Periodic Coefficients. Journal of Combinatorics & System Sciences, 45(1–4), 375–385.
  26. Vernon, R., Arora, G., & Unnithan, S. (2023). Decomposition of Linear Recurrence Relations with Periodic Coefficients. Submitted and in review.
  27. Waddill, M., & Sacks, L. (1967). Another generalized Fibonacci sequence. The Fibonacci Quarterly, 5(3), 209–222.
  28. Yayenie, O. (2011). A note on generalized Fibonacci sequences. Applied Mathematics and Computation, 217(12), 5603–5611.

Manuscript history

  • Received: 24 September 2023
  • Revised: 26 February 2024
  • Accepted: 27 February 2024
  • Online First: 28 February 2024

Copyright information

Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Ma, T., Vernon. R., & Arora, G. (2024). Generalization of the 2-Fibonacci sequences and their Binet formula. Notes on Number Theory and Discrete Mathematics, 30(1), 67-80, DOI: 10.7546/nntdm.2024.30.1.67-80.

Comments are closed.