Timmy Ma, Richard Vernon and Gurdial Arora
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 1, Pages 67–80
DOI: 10.7546/nntdm.2024.30.1.67-80
Full paper (PDF, 256 Kb)
Details
Authors and affiliations
Timmy Ma
Department of Mathematics, Xavier University of Louisiana
1 Drexel Drive, New Orleans, LA 70125, United States
Richard Vernon
Department of Mathematics, Xavier University of Louisiana
1 Drexel Drive, New Orleans, LA 70125, United States
Gurdial Arora
Department of Mathematics, Xavier University of Louisiana
1 Drexel Drive, New Orleans, LA 70125, United States
Abstract
We will explore the generalization of the four different 2-Fibonacci sequences defined by Atanassov. In particular, we will define recurrence relations to generate each part of a 2-Fibonacci sequence, discuss the generating function and Binet formula of each of these sequences, and provide the necessary and sufficient conditions to obtain each type of Binet formula.
Keywords
- Fibonacci sequences
- Binet formula
- Bi-periodic Fibonacci sequence
- 2-Fibonacci sequences
2020 Mathematics Subject Classification
- 11B39
References
- Ando, S., & Hayashi, M. (1997). Counting the number of equivalence classes of (m, F) sequences and their generalizations. The Fibonacci Quarterly, 35(1), 3–8.
- Atanassov, K. (1986). On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, 24(4), 362–365.
- Atanassov, K. (2006). A new direction of Fibonacci sequence modification. Notes on Number Theory and Discrete Mathematics, 12(1), 25–32.
- Atanassov, K. (2010). Combined 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 16(2), 24–28.
- Atanassov, K. (2014). A set of Lucas sequences. Notes on Number Theory and Discrete Mathematics, 20(2), 1–5.
- Atanassov, K. (2022). Two 2-Fibonacci sequences generated by a mixed scheme. Part 1. Notes on Number Theory and Discrete Mathematics, 28(2), 331–338.
- Atanassov, K., Atanassova, L., & Sasselov, D. (1985). A new perspective to the
generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23(1), 21–28. - Atanassov, K., Atanassova, V., Shannon, A. G., & Turner, J. (2002). New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
- Badshah, V., & Khan, I. (2009). New generalization of the Fibonacci sequence in case of 4-order recurrence equations. International Journal of Theoretical & Applied Sciences, 1(2), 93–96.
- Bilgici, G. (2014). New generalizations of Fibonacci and Lucas sequences. Applied
Mathematical Sciences, 8(29), 1429–1437. - Dantchev, S. (1998). A closed form of the (2, F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 36(5), 448–451.
- Edson, M., & Yayenie, O. (2009). A new generalization of Fibonacci sequence & extended Binet’s formula. Integers, 9(6), 639–654.
- Falcon, S., & Plaza, A. (2007). The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons & Fractals, 33(1), 38–49.
- Godase, M. (2021). Study of Generalized Fibonacci Sequences. Doctoral dissertation. Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.
- Harne, S., Singh, B., & Pal, S. (2014). Generalized Fibonacci-like sequence and Fibonacci sequence. International Journal of Contemporary Mathematical Sciences, 9(5), 235–241.
- Horadam, A. (1961). A generalized Fibonacci sequence. The American Mathematical Monthly, 68(5), 455–459.
- Ipek, A. (2017). On (p, q)-Fibonacci quaternions and their Binet formulas, generating functions and certain binomial sums. Advances in Applied Clifford Algebras, 27, 1343–1351.
- Jaiswal, D. (1969). On a generalized Fibonacci sequence. Labdev Journal of Science and Technology. Part A, 7, 67–71.
- Kim, H. S., Neggers, J., & Park, C. (2018). On generalized Fibonacci k-sequences and Fibonacci k-numbers. Journal of Computational Analysis & Applications, 24(5), 805–814.
- Klein, S. (1991). Combinatorial representation of generalized Fibonacci numbers. The Fibonacci Quarterly, 29(2), 124–131.
- Lee, G. Y., Lee, S. G., Kim, J. S., & Shin, H. K. (2001). The Binet formula and
representations of k-generalized Fibonacci numbers. The Fibonacci Quarterly, 39(2), 158–164. - Lee, G. Y., Lee, S. G., & Shin, H. G. (1997). On the k-generalized Fibonacci matrix Qk. Linear Algebra and Its Applications, 251, 73–88.
- Roy, S. (2006). On the solution of quartic and cubic equations. IETE Journal of Education, 47(2), 91–95.
- Spickerman, W., Joyner, R., & Creech, R. (1992). On the (2, F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 30(4), 310–314.
- Vernon, R. P., Arora, G., & Unnithan, S. (2020). A Study of Linear Recurrence Relations with Periodic Coefficients. Journal of Combinatorics & System Sciences, 45(1–4), 375–385.
- Vernon, R., Arora, G., & Unnithan, S. (2023). Decomposition of Linear Recurrence Relations with Periodic Coefficients. Submitted and in review.
- Waddill, M., & Sacks, L. (1967). Another generalized Fibonacci sequence. The Fibonacci Quarterly, 5(3), 209–222.
- Yayenie, O. (2011). A note on generalized Fibonacci sequences. Applied Mathematics and Computation, 217(12), 5603–5611.
Manuscript history
- Received: 24 September 2023
- Revised: 26 February 2024
- Accepted: 27 February 2024
- Online First: 28 February 2024
Copyright information
Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Atanassov, K. (2006). A new direction of Fibonacci sequence modification. Notes on Number Theory and Discrete Mathematics, 12(1), 25–32.
- Atanassov, K. (2010). Combined 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 16(2), 24–28.
- Atanassov, K. (2014). A set of Lucas sequences. Notes on Number Theory and Discrete Mathematics, 20(2), 1–5.
- Atanassov, K. (2022). Two 2-Fibonacci sequences generated by a mixed scheme. Part 1. Notes on Number Theory and Discrete Mathematics, 28(2), 331–338.
Cite this paper
Ma, T., Vernon. R., & Arora, G. (2024). Generalization of the 2-Fibonacci sequences and their Binet formula. Notes on Number Theory and Discrete Mathematics, 30(1), 67-80, DOI: 10.7546/nntdm.2024.30.1.67-80.