New Fibonacci-type pulsated sequences

Lilija Atanassova and Velin Andonov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 4, Pages 789–793
DOI: 10.7546/nntdm.2023.29.4.789-793
Full paper (PDF, 165 Kb)

Details

Authors and affiliations

Lilija Atanassova
Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 2, Sofia-1113, Bulgaria

Velin Andonov
Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8, Sofia-1113, Bulgaria

Abstract

A new Fibonacci-type sequence from pulsated type is introduced. The explicit form of its members is given.

Keywords

  • Fibonacci sequence
  • Pulsated sequence

2020 Mathematics Subject Classification

  • 11B39

References

  1. Atanassov, K. (1986). On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, 24(4), 362–365.
  2. Atanassov, K. (1989). On a generalization of the Fibonacci sequence in the case of three sequences. The Fibonacci Quarterly, 27(1), 7–10.
  3. Atanassov, K. (2013). Pulsating Fibonacci sequence. Notes on Number Theory and Discrete Mathematics, 19(3), 12–14.
  4. Atanassov, K. (2014). n-Pulsated Fibonacci sequence. Notes on Number Theory and Discrete Mathematics, 20(1), 32–35.
  5. Atanassov, K., Atanassova, L. & Sasselov, D. (1985). A new perspective to the
    generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23(1), 21–28.
  6. Atanassov, K., Atanassova, V., Shannon, A., & Turner, J. (2002). New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
  7. Atanassov, K., Deford, D. R., & Shannon A. G. (2014). Pulsated Fibonacci recurrences. Proceedings of the Sixteenth International Conference on Fibonacci Numbers and Their Applications (P. Anderson, C. Ballot, W. Webb, Eds.), 20–27 July 2014, Rochester, New York, USA, 22–27.
  8. Lee, J.-Z., & Lee, J.-S. (1987). Some properties of the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 25(2), 111–117.
  9. Spickerman, W., & Creech, R. (1997). The (2, T) generalized Fibonacci sequences. The Fibonacci Quarterly, 35(4), 358–360.
  10. Spickerman, W., Creech, R., & Joyner, R. (1993). On the structure of the set of difference systems defining (3, F) generalized Fibonacci sequence. The Fibonacci Quarterly, 31(4), 333–337.
  11. Spickerman, W., Creech, R., & Joyner, R. (1995). On the (3, F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 33(1), 9–12.
  12. Spickerman, W., Joyner, R., & Creech, R. (1992). On the (2, F ) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 30(4), 310–314.

Manuscript history

  • Received: 12 June 2023
  • Revised: 6 October 2023
  • Accepted: 22 November 2023
  • Online First: 30 November 2023

Copyright information

Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Atanassova, L., & Andonov, V. (2023). New Fibonacci-type pulsated sequences. Notes on Number Theory and Discrete Mathematics, 29(4), 789-793, DOI: 10.7546/nntdm.2023.29.4.789-793.

Comments are closed.