New Fibonacci-type pulsated sequences

Lilija Atanassova ${ }^{1}$ and Velin Andonov ${ }^{2}$

${ }^{1}$ Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 2, Sofia-1113, Bulgaria
e-mail: l.c.atanassova@gmail.com
${ }^{2}$ Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8, Sofia-1113, Bulgaria
e-mail: velin_andonov@math.bas.bg

Received: 12 June 2023
Accepted: 22 November 2023

Revised: 6 October 2023
Online First: 30 November 2023

Abstract

A new Fibonacci-type sequence from pulsated type is introduced. The explicit form of its members is given.

Keywords: Fibonacci sequence, Pulsated sequence.
2020 Mathematics Subject Classification: 11B39.

1 Introduction

Approximately 40 years ago, the first extension of the Fibonacci sequence in the form of two or more sequences, was introduced in [5].

This idea was developed in different directions (see, e.g., [1-4, 6-8, 10-12]). One of these new ideas was introduced in $[3,4]$. This direction was called pulsated sequences.

In the present paper, a new type of pulsated sequences is constructed.

	Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
(c) ©	
terms and conditions of the Creative Commons Attribution 4.0 International License	
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/	

2 Main results

Let a, b, c, d be fixed real numbers. Let us define the following Fibonacci sequence(s) of pulsated type:

$$
\begin{aligned}
\alpha_{0} & =a, \\
\beta_{1} & =b, \\
\alpha_{1} & =c, \\
\gamma_{1} & =d, \\
\beta_{3 k+2} & =\beta_{3 k+1}+\alpha_{3 k}, \\
\alpha_{3 k+2} & =\alpha_{3 k+1}+\alpha_{3 k}, \\
\gamma_{3 k+2} & =\gamma_{3 k+1}+\alpha_{3 k}, \\
\alpha_{3 k+3} & =\alpha_{3 k+2}+\beta_{3 k+2}+\gamma_{3 k+2}, \\
\beta_{3 k+4} & =\alpha_{3 k+3}+\gamma_{3 k+2}, \\
\alpha_{3 k+4} & =\alpha_{3 k+3}+\alpha_{3 k+2}, \\
\gamma_{3 k+4} & =\alpha_{3 k+3}+\beta_{3 k+2},
\end{aligned}
$$

where $k \geq 0$ is an integer. The first members of this new sequence are the following:

n	β_{n}	α_{n}	γ_{n}
0		a	
1	b	c	d
2	$a+b$	$a+c$	$a+d$
3		$3 a+b+c+d$	
4	$4 a+b+c+2 d$	$4 a+b+2 c+d$	$4 a+2 b+c+d$
5	$7 a+2 b+2 c+3 d$	$7 a+2 b+3 c+2 d$	$7 a+3 b+2 c+2 d$
6		$7(3 a+b+c+d)$	
7	$28 a+10 b+9 c+9 d$	$28 a+9 b+10 c+9 d$	$28 a+9 b+9 c+10 d$
8	$49 a+17 b+16 c+16 d$	$49 a+16 b+17 c+16 d$	$49 a+16 b+16 c+17 d$
9		$49(3 a+b+c+d)$	
10	$196 a+65 b+65 c+66 d$	$196 a+65 b+66 c+65 d$	$196 a+66 b+65 c+65 d$
11	$343 a+114 b+114 c+115 d$	$343 a+114 b+115 c+114 d$	$343 a+115 b+114 c+114 d$
12		$343(3 a+b+c+d)$	
13	$1372 a+458 b+457 c+457 d$	$1372 a+456 b+457 c+456 d$	$1373 a+457 b+457 c+458 d$
14	$2401 a+801 b+800 c+800 d$	$2401 a+800 b+801 c+800 d$	$2401 a+800 b+800 c+801 d$
15		$2401(3 a+b+c+d)$	
\vdots	\vdots	\vdots	\vdots

Theorem. For every four real numbers a, b, c, d and for every integer $k \geq 1$:

$$
\begin{aligned}
& \beta_{6 k+1}=4 \cdot 7^{2 k-1} a+\left(\frac{4 \cdot 7^{2 k-1}-1}{3}+1\right) b+\frac{4 \cdot 7^{2 k-1}-1}{3} c+\frac{4 \cdot 7^{2 k-1}-1}{3} d, \\
& \alpha_{6 k+1}=4 \cdot 7^{2 k-1} a+\frac{4 \cdot 7^{2 k-1}-1}{3} b+\left(\frac{4 \cdot 7^{2 k-1}-1}{3}+1\right) c+\frac{4 \cdot 7^{2 k-1}-1}{3} d, \\
& \gamma_{6 k+1}=4 \cdot 7^{2 k-1} a+\frac{4 \cdot 7^{2 k-1}-1}{3} b+\frac{4 \cdot 7^{2 k-1}-1}{3} c+\left(\frac{4 \cdot 7^{2 k-1}-1}{3}+1\right) d, \\
& \beta_{6 k+2}=7^{2 k} a+\left(\frac{7^{2 k}-1}{3}+1\right) b+\frac{7^{2 k}-1}{3} c+\frac{7^{2 k}-1}{3} d, \\
& \alpha_{6 k+2}=7^{2 k} a+\frac{7^{2 k}-1}{3} b+\left(\frac{7^{2 k}-1}{3}+1\right) c+\frac{7^{2 k}-1}{3} d, \\
& \gamma_{6 k+2}=7^{2 k} a+\frac{7^{2 k}-1}{3} b+\frac{7^{2 k}-1}{3} c+\left(\frac{7^{2 k}-1}{3}+1\right) d, \\
& \alpha_{6 k+3}=7^{2 k}(3 a+b+c+d), \\
& \beta_{6 k+4}=4 \cdot 7^{2 k} a+\frac{4 \cdot 7^{2 k}-1}{3} b+\frac{4 \cdot 7^{2 k}-1}{3} c+\left(\frac{4 \cdot 7^{2 k}-1}{3}+1\right) d, \\
& \alpha_{6 k+4}=4 \cdot 7^{2 k} a+\frac{4 \cdot 7^{2 k}-1}{3} b+\left(\frac{4 \cdot 7^{2 k}-1}{3}+1\right) c+\frac{4 \cdot 7^{2 k}-1}{3} d, \\
& \gamma_{6 k+4}=4 \cdot 7^{2 k} a+\left(\frac{4 \cdot 7^{2 k}-1}{3}\right) b+\frac{4 \cdot 7^{2 k}-1}{3} c+\frac{4 \cdot 7^{2 k}-1}{3} d, \\
& \beta_{6 k+5}=7^{2 k+1} a+\frac{7^{2 k+1}+1}{3} b+\frac{7^{2 k+1}-1}{3} c+\left(\frac{7^{2 k+1}-1}{3}+1\right) d, \\
& \alpha_{6 k+5}=7^{2 k+1} a+\frac{7^{2 k+1}-1}{3} b+\left(\frac{7^{2 k+1}-1}{3}+1\right) c+\frac{7^{2 k+1}-1}{3} d, \\
& \gamma_{6 k+5}=7^{2 k+1} a+\left(\frac{7^{2 k+1}-1}{3}+1\right) b+\frac{7^{2 k+1}-1}{3} c+\frac{7^{2 k+1}-1}{3} d, \\
& \alpha_{6 k+6}=7^{2 k+1}(3 a+b+c+d) .
\end{aligned}
$$

Proof. For $k=1$ the assertion is valid (see the above table). Let us assume that it is valid for some k. Then

$$
\begin{aligned}
\beta_{6(k+1)+1} & =\beta_{6 k+7} \\
& =\alpha_{6 k+6}+\gamma_{6 k+5} \\
& =7^{2 k+1}(3 a+b+c+d)+7^{2 k+1} a+\left(\frac{7^{2 k+1}-1}{3}+1\right) b+\frac{7^{2 k+1}-1}{3} c+\frac{7^{2 k+1}-1}{3} d \\
& =4 \cdot 7^{2 k+1} a+\left(\frac{4 \cdot 7^{2 k+1}-1}{3}+1\right) b+\frac{4 \cdot 7^{2 k+1}-1}{3} c+\frac{4 \cdot 7^{2 k+1}-1}{3} d . \\
\alpha_{6(k+1)+1} & =\alpha_{6 k+7} \\
& =\alpha_{6 k+6}+\alpha_{6 k+5} \\
& =7^{2 k+1}(3 a+b+c+d)+7^{2 k+1} a+\frac{7^{2 k+1}-1}{3} b+\left(\frac{7^{2 k+1}-1}{3}+1\right) c+\frac{7^{2 k+1}-1}{3} d, \\
& =4 \cdot 7^{2 k+1} a+\frac{4 \cdot 7^{2 k+1}-1}{3} b+\left(\frac{4 \cdot 7^{2 k+1}-1}{3}+1\right) c+\frac{4 \cdot 7^{2 k+1}-1}{3} d .
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{6(k+1)+1}=\gamma_{6 k+7} \\
&=\alpha_{6 k+6}+\beta_{6 k+5} \\
&=7^{2 k+1}(3 a+b+c+d)+7^{2 k+1} a+\frac{7^{2 k+1}+1}{3} b+\frac{7^{2 k+1}-1}{3} c+\left(\frac{7^{2 k+1}-1}{3}+1\right) d \\
&=4 \cdot 7^{2 k+1} a+\frac{4 \cdot 7^{2 k+1}-1}{3} b+\frac{4 \cdot 7^{2 k+1}-1}{3} c+\left(\frac{4 \cdot 7^{2 k+1}-1}{3}+1\right) d . \\
& \beta_{6(k+1)+2}=\beta_{6 k+8} \\
&=\beta_{6 k+7}+\alpha_{6 k+6} \\
&=4 \cdot 7^{2 k+1} a+\left(\frac{4 \cdot 7^{2 k+1}-1}{3}+1\right) b+\frac{4 \cdot 7^{2 k+1}-1}{3} c+\frac{4 \cdot 7^{2 k+1}-1}{3} d+7^{2 k+1}(3 a+b+c+d) \\
&=7^{2 k+2} a+\left(\frac{7^{2 k+2}-1}{3}+1\right) b+\frac{7^{2 k+2}-1}{3} c+\frac{7^{2 k+2}-1}{3} d . \\
& \alpha_{6(k+1)+2}=\alpha_{6 k+8} \\
&=\alpha_{6 k+7}+\alpha_{6 k+6} \\
&=4 \cdot 7^{2 k+1} a+\frac{4 \cdot 7^{2 k+1}-1}{3} b+\left(\frac{4 \cdot 7^{2 k+1}-1}{3}+1\right) c+\frac{4 \cdot 7^{2 k+1}-1}{3} d+7^{2 k+1}(3 a+b+c+d) \\
&=7^{2 k+2} a+\frac{7^{2 k+2}-1}{3} b+\left(\frac{7^{2 k+2}-1}{3}+1\right) c+\frac{7^{2 k+2}-1}{3} d . \\
&=\gamma_{6 k+8} \\
&=\gamma_{6 k+7}+\alpha_{6 k+6} \\
&=4 \cdot 7^{2 k+1} a+\frac{4 \cdot 7^{2 k+1}-1}{3} b+\frac{4 \cdot 7^{2 k+1}-1}{3} c+\left(\frac{4 \cdot 7^{2 k+1}-1}{3}+1\right) d+7^{2 k+1}(3 a+b+c+d) \\
&=7^{2 k+2} a+\frac{7^{2 k+2}-1}{3} b+\frac{7^{2 k+2}-1}{3} c+\left(\frac{7^{2 k+2}-1}{3}+1\right) d . \\
& \gamma_{6(k+1)+2} \\
&=\alpha_{6 k+9} \\
&=\beta_{6 k+8}+\alpha_{6 k+8}+\gamma_{6 k+8} \\
&=7^{2 k+2} a+\left(\frac{7^{2 k+2}-1}{3}+1\right) b+\frac{7^{2 k+2}-1}{3} c+\frac{7^{2 k+2}-1}{3} d \\
&+7^{2 k+2} a+\frac{7^{2 k+2}-1}{3} b+\left(\frac{7^{2 k+2}-1}{3}+1\right) c+\frac{7^{2 k+2}-1}{3} d \\
&+7^{2 k+2} a+\frac{7^{2 k+2}-1}{3} b+\frac{7^{2 k+2}-1}{3} c+\left(\frac{7^{2 k+2}-1}{3}+1\right) d \\
&=7^{2 k+2}(3 a+b+c+d) .
\end{aligned}
$$

The remaining equalities are checked in the same manner.

3 Conclusion

The Finonacci-type sequence discussed in the paper has a new form. In future, we will define other sequences of the same type and their properties will be studied.

References

[1] Atanassov, K. (1986). On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, 24(4), 362-365.
[2] Atanassov, K. (1989). On a generalization of the Fibonacci sequence in the case of three sequences. The Fibonacci Quarterly, 27(1), 7-10.
[3] Atanassov, K. (2013). Pulsating Fibonacci sequence. Notes on Number Theory and Discrete Mathematics, 19(3), 12-14.
[4] Atanassov, K. (2014). n-Pulsated Fibonacci sequence. Notes on Number Theory and Discrete Mathematics, 20(1), 32-35.
[5] Atanassov, K., Atanassova, L. \& Sasselov, D. (1985). A new perspective to the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23(1), 21-28.
[6] Atanassov, K., Atanassova, V., Shannon, A., \& Turner, J. (2002). New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
[7] Atanassov, K., Deford, D. R., \& Shannon A. G. (2014). Pulsated Fibonacci recurrences. Proceedings of the Sixteenth International Conference on Fibonacci Numbers and Their Applications (P. Anderson, C. Ballot, W. Webb, Eds.), 20-27 July 2014, Rochester, New York, USA, 22-27.
[8] Lee, J.-Z., \& Lee, J.-S. (1987). Some properties of the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 25(2), 111-117.
[9] Spickerman, W., \& Creech, R. (1997). The $(2, T)$ generalized Fibonacci sequences. The Fibonacci Quarterly, 35(4), 358-360.
[10] Spickerman, W., Creech, R., \& Joyner, R. (1993). On the structure of the set of difference systems defining $(3, F)$ generalized Fibonacci sequence. The Fibonacci Quarterly, 31(4), 333-337.
[11] Spickerman, W., Creech, R., \& Joyner, R. (1995). On the (3,F) generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 33(1), 9-12.
[12] Spickerman, W., Joyner, R., \& Creech, R. (1992). On the $(2, F)$ generalizations of the Fibonacci sequence. The Fibonacci Quarterly, 30(4), 310-314.

