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1 Introduction

Approximately 40 years ago, the first extension of the Fibonacci sequence in the form of two or
more sequences, was introduced in [5].

This idea was developed in different directions (see, e.g., [1–4, 6–8, 10–12]). One of these
new ideas was introduced in [3, 4]. This direction was called pulsated sequences.

In the present paper, a new type of pulsated sequences is constructed.

Copyright © 2023 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



2 Main results

Let a, b, c, d be fixed real numbers. Let us define the following Fibonacci sequence(s) of pulsated
type:

α0 = a,

β1 = b,

α1 = c,

γ1 = d,

β3k+2 = β3k+1 + α3k,

α3k+2 = α3k+1 + α3k,

γ3k+2 = γ3k+1 + α3k,

α3k+3 = α3k+2 + β3k+2 + γ3k+2,

β3k+4 = α3k+3 + γ3k+2,

α3k+4 = α3k+3 + α3k+2,

γ3k+4 = α3k+3 + β3k+2,

where k ≥ 0 is an integer. The first members of this new sequence are the following:

n βn αn γn

0 a

1 b c d

2 a+ b a+ c a+ d

3 3a+ b+ c+ d

4 4a+ b+ c+ 2d 4a+ b+ 2c+ d 4a+ 2b+ c+ d

5 7a+ 2b+ 2c+ 3d 7a+ 2b+ 3c+ 2d 7a+ 3b+ 2c+ 2d

6 7(3a+ b+ c+ d)

7 28a+ 10b+ 9c+ 9d 28a+ 9b+ 10c+ 9d 28a+ 9b+ 9c+ 10d

8 49a+ 17b+ 16c+ 16d 49a+ 16b+ 17c+ 16d 49a+ 16b+ 16c+ 17d

9 49(3a+ b+ c+ d)

10 196a+ 65b+ 65c+ 66d 196a+ 65b+ 66c+ 65d 196a+ 66b+ 65c+ 65d

11 343a+ 114b+ 114c+ 115d 343a+ 114b+ 115c+ 114d 343a+ 115b+ 114c+ 114d

12 343(3a+ b+ c+ d)

13 1372a+ 458b+ 457c+ 457d 1372a+ 456b+ 457c+ 456d 1373a+ 457b+ 457c+ 458d

14 2401a+ 801b+ 800c+ 800d 2401a+ 800b+ 801c+ 800d 2401a+ 800b+ 800c+ 801d

15 2401(3a+ b+ c+ d)
...

...
...

...
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Theorem. For every four real numbers a, b, c, d and for every integer k ≥ 1:

β6k+1 = 4 · 72k−1a+
(

4·72k−1−1
3

+ 1
)
b+ 4·72k−1−1

3
c+ 4·72k−1−1

3
d,

α6k+1 = 4 · 72k−1a+ 4·72k−1−1
3

b+
(

4·72k−1−1
3

+ 1
)
c+ 4·72k−1−1

3
d,

γ6k+1 = 4 · 72k−1a+ 4·72k−1−1
3

b+ 4·72k−1−1
3

c+
(

4·72k−1−1
3

+ 1
)
d,

β6k+2 = 72ka+
(

72k−1
3

+ 1
)
b+ 72k−1

3
c+ 72k−1

3
d,

α6k+2 = 72ka+ 72k−1
3

b+
(

72k−1
3

+ 1
)
c+ 72k−1

3
d,

γ6k+2 = 72ka+ 72k−1
3

b+ 72k−1
3

c+
(

72k−1
3

+ 1
)
d,

α6k+3 = 72k(3a+ b+ c+ d),

β6k+4 = 4 · 72ka+ 4·72k−1
3

b+ 4·72k−1
3

c+
(

4·72k−1
3

+ 1
)
d,

α6k+4 = 4 · 72ka+ 4·72k−1
3

b+
(

4·72k−1
3

+ 1
)
c+ 4·72k−1

3
d,

γ6k+4 = 4 · 72ka+
(

4·72k−1
3

)
b+ 4·72k−1

3
c+ 4·72k−1

3
d,

β6k+5 = 72k+1a+ 72k+1+1
3

b+ 72k+1−1
3

c+
(

72k+1−1
3

+ 1
)
d,

α6k+5 = 72k+1a+ 72k+1−1
3

b+
(

72k+1−1
3

+ 1
)
c+ 72k+1−1

3
d,

γ6k+5 = 72k+1a+
(

72k+1−1
3

+ 1
)
b+ 72k+1−1

3
c+ 72k+1−1

3
d,

α6k+6 = 72k+1(3a+ b+ c+ d).

Proof. For k = 1 the assertion is valid (see the above table). Let us assume that it is valid for
some k. Then

β6(k+1)+1 = β6k+7

= α6k+6 + γ6k+5

= 72k+1(3a+ b+ c+ d) + 72k+1a+
(

72k+1−1
3

+ 1
)
b+ 72k+1−1

3
c+ 72k+1−1

3
d

= 4 · 72k+1a+
(

4·72k+1−1
3

+ 1
)
b+ 4·72k+1−1

3
c+ 4·72k+1−1

3
d.

α6(k+1)+1 = α6k+7

= α6k+6 + α6k+5

= 72k+1(3a+ b+ c+ d) + 72k+1a+ 72k+1−1
3

b+
(

72k+1−1
3

+ 1
)
c+ 72k+1−1

3
d,

= 4 · 72k+1a+ 4·72k+1−1
3

b+
(

4·72k+1−1
3

+ 1
)
c+ 4·72k+1−1

3
d.

791



γ6(k+1)+1 = γ6k+7

= α6k+6 + β6k+5

= 72k+1(3a+ b+ c+ d) + 72k+1a+ 72k+1+1
3

b+ 72k+1−1
3

c+
(

72k+1−1
3

+ 1
)
d

= 4 · 72k+1a+ 4·72k+1−1
3

b+ 4·72k+1−1
3

c+
(

4·72k+1−1
3

+ 1
)
d.

β6(k+1)+2 = β6k+8

= β6k+7 + α6k+6

= 4 · 72k+1a+
(

4·72k+1−1
3

+ 1
)
b+ 4·72k+1−1

3
c+ 4·72k+1−1

3
d+ 72k+1(3a+ b+ c+ d)

= 72k+2a+
(

72k+2−1
3

+ 1
)
b+ 72k+2−1

3
c+ 72k+2−1

3
d.

α6(k+1)+2 = α6k+8

= α6k+7 + α6k+6

= 4 · 72k+1a+ 4·72k+1−1
3

b+
(

4·72k+1−1
3

+ 1
)
c+ 4·72k+1−1

3
d+ 72k+1(3a+ b+ c+ d)

= 72k+2a+ 72k+2−1
3

b+
(

72k+2−1
3

+ 1
)
c+ 72k+2−1

3
d.

γ6(k+1)+2 = γ6k+8

= γ6k+7 + α6k+6

= 4 · 72k+1a+ 4·72k+1−1
3

b+ 4·72k+1−1
3

c+
(

4·72k+1−1
3

+ 1
)
d+ 72k+1(3a+ b+ c+ d)

= 72k+2a+ 72k+2−1
3

b+ 72k+2−1
3

c+
(

72k+2−1
3

+ 1
)
d.

α6(k+1)+3 = α6k+9

= β6k+8 + α6k+8 + γ6k+8

= 72k+2a+
(

72k+2−1
3

+ 1
)
b+ 72k+2−1

3
c+ 72k+2−1

3
d

+72k+2a+ 72k+2−1
3

b+
(

72k+2−1
3

+ 1
)
c+ 72k+2−1

3
d

+72k+2a+ 72k+2−1
3

b+ 72k+2−1
3

c+
(

72k+2−1
3

+ 1
)
d

= 72k+2(3a+ b+ c+ d).

The remaining equalities are checked in the same manner.

3 Conclusion

The Finonacci-type sequence discussed in the paper has a new form. In future, we will define
other sequences of the same type and their properties will be studied.
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