Explicit relations on the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi polynomials and numbers

Burak Kurt
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 3, Pages 486–494
DOI: 10.7546/nntdm.2023.29.3.486-494
Full paper (PDF, 207 Kb)

Details

Authors and affiliations

Burak Kurt
Department of Mathematics and Science Education, Faculty of Education,
Akdeniz University, Antalya TR-07058, Turkey

Abstract

The main aim of this paper is to introduce and investigate the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi polynomials by using monomiality principle and operational methods. We give explicit relations and some identities for the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi polynomials.

Keywords

  • Type 2-Bernoulli, Euler and Genocchi polynomials
  • Degenerate Bernoulli, Euler and Genocchi polynomials
  • Unified degenerate Apostol–Bernoulli, Euler and Genocchi polynomials
  • Monomiality principle
  • Multiplicative operators

2020 Mathematics Subject Classification

  • 11B68
  • 11B83
  • 05A10
  • 33B11

References

  1. Belingeri, C., Dattoli, G., & Ricci P. E. (2007). The monomialty approach to multi-index polynomials in several variables. Georgian Mathematical Journal, 14(1), 53–64.
  2. Carlitz, L. (1956). A degenerate Staudt–Clausen theorem. Archiv der Mathematik (Basel), 7, 28–33.
  3. Carlitz, L. (1979). Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas
    Mathematica, 15, 51–88.
  4. Dattoli, G. (2001). Hermite–Bessel and Laguerre–Bessel functions: A byproduct of the monomiality principle. Advanced Special Functions and Applications, 1, 147–164.
  5. Dattoli, G., Migliorati, M., & Srivastava H. M. (2004). A class of Bessel summation formulas and associated operational methods. Fractional Calculus and Applied Analysis, 7(2), 169–176.
  6. Kim, D., Wongsason, P., & Kwon, J. (2022). Type 2-degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 7(6), 9716–9730.
  7. Kim, D. S., Kim, H. Y., Kim, D., & Kim, T. (2019). Identities of symmetry for the type 2 Bernoulli and Euler polynomials. Symmetry, 11(5), Article ID 613.
  8. Kim, H. K., & Lee, D. S. (2021). A new type of degenerate poly-type 2 Euler
    polynomials and degenerate unipoly-type 2 Euler polynomials. Proceedings of the Jangjeon Mathematical Society, 24(2), 205–222.
  9. Kim, T., Jang, L.-C., Kim, D. S., & Kim, H. Y. (2019). Some identities on the type 2 degenerate Bernoulli polynomials of the second kind. Symmetry, 12(4), Article ID 510.
  10. Kim, T., Kim, D. S., Dolgy, D. V., Lee S.-H., & Kwon J.-K. (2021). Some identities of the higher-order type 2-Bernoulli numbers and polynomials of the second kind. Computer Modeling in Engineering & Sciences, 128(3), 1121–1132.
  11. Khan, S., Nahid, T., & Riyasat, M. (2019). On degenerate Apostol-type polynomials and applications. Boletín de la Sociedad Matemática Mexicana, 25(3), 509–528.
  12. Khan, S., & Raza, N. (2013). General-Appell polynomials within the context of
    monomiality principle. International Journal of Analysis, 2013, Article ID 328032.
  13. Khan, S., Yasmin, G., & Riyasat, M. (2015). Certain result for the 2-variable Apostol type and related polynomials. Computers and Mathematics with Applications, 69, 1367–1382.
  14. Kurt, B. (2022). Unified degenerate Apostol-type Bernoulli, Euler, Genocchi and Fubini polynomials. Journal of Mathematics and Computer Science, 25(3), 259–268.
  15. Luo, Q.-M. (2009). The multiplication formulas for the Apostol–Bernoulli and
    Apostol–Euler polynomials of higher order. Integral Transforms and Special Functions, 20(5), 377–391.
  16. Luo, Q.-M., & Srivastava, H. M. (2005). Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials. Journal of Mathematical Analysis and Applications, 308(1), 290–302.
  17. Özarslan, M. A. (2011). Unified Apostol–Bernoulli, Euler and Genocchi polynomials. Computers & Mathematics with Applications, 62(6), 2452–2462.
  18. Ozden, H., Simsek, Y., & Srivastava. H. M. (2010). A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Computers & Mathematics with Applications, 60(10), 2779–2787.
  19. Ryoo, C. S. (2011). A note on the second kind Genocchi polynomials. Journal of
    Computational Analysis and Applications, 13(5), 986–992.
  20. Srivastava, H. M. (2011). Some generalization and basic (or q-) extension of the Bernoulli, Euler and Genocchi polynomials. Applied Mathematics & Information Sciences, 5(3), 390–444.
  21. Srivastava, H. M., & Choi, J. (2012). Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam.
  22. Srivastava, H. M., Kurt, B., & Kurt, V. (2019). Identities and relations involving the modified degenerate Hermite-based Apostol–Bernoulli and Apostol–Euler polynomials. RACSAM, 113(2), 1299–1313.

Manuscript history

  • Received: 18 November 2022
  • Revised: 5 June 2023
  • Accepted: 19 June 2023
  • Online First: 11 July 2023

Copyright information

Ⓒ 2023 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Kurt, B. (2023). Explicit relations on the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi polynomials and numbers. Notes on Number Theory and Discrete Mathematics, 29(3), 486-494, DOI: 10.7546/nntdm.2023.29.3.486-494.

Comments are closed.