Brahim Mittou
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 744–748
DOI: 10.7546/nntdm.2022.28.4.744-748
Full paper (PDF, 182 Kb)
Details
Authors and affiliations
Brahim Mittou
Department of Mathematics, University Kasdi Merbah, Ouargla
EDPNL & HM Laboratory, ENS of Kouba, Algiers, Algeria
Abstract
Let be a prime number and let and be integers with . Let be a Dirichlet character modulo and be the Dirichlet L-function corresponding to . Explicit formulas for:
are given in this paper by using the properties of character sums and Bernoulli polynomials.
Keywords
- Character sum
- Dirichlet L-function
- Bernoulli number
- Generalized Bernoulli number
2020 Mathematics Subject Classification
- 11M06
- 11B68
References
- Apostol, T. M. (1976). Introduction to Analytic Number Theory. Springer-Verlag, New York.
- Arakawa, T., Ibukiyama, T., & Kaneko, M. (2014). Bernoulli Numbers and Zeta Functions. Springer, Japan.
- Liu, H. (2015). On the mean values of Dirichlet L-functions. Journal of Number Theory, 147, 172–183.
- Louboutin, S. (1993). Quelques formules exactes pour des moyennes de fonctions L de Dirichlet. Bulletin canadien de mathématiques, 36(2), 190–196.
- Louboutin, S. (2015). Twisted quadratic moments for Dirichlet L-functions. Bulletin of the Korean Mathematical Society, 52(6), 2095–2105.
- Louboutin, S. (2019). Twisted quadratic moments for Dirichlet L-functions at s = 2. Publicationes Mathematicae Debrecen, 95(3–4), 393–400.
- Walum, H. (1982). An exact formula for an average of L-series. Illinois Journal of
Mathematics, 26(1), 1–3.
Manuscript history
- Received: 11 May 2022
- Revised: 20 August 2022
- Accepted: 10 November 2022
- Online First: 11 November 2022
Related papers
Cite this paper
Mittou, B. (2022). Explicit formulas for sums related to Dirichlet L-functions. Notes on Number Theory and Discrete Mathematics, 28(4), 744-748, DOI: 10.7546/nntdm.2022.28.4.744-748.