Pentti Haukkanen
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 656–665
DOI: 10.7546/nntdm.2022.28.4.656-665
Full paper (PDF, 179 Kb)
Details
Authors and affiliations
Pentti Haukkanen
Faculty of Information Technology and Communication Sciences,
FI-33014 Tampere University, Finland
Abstract
Two subsets P and Q of the set of positive integers is said to form a conjugate pair if each positive integer n possesses a unique factorization of the form n = ab, a ∈ P, b ∈ Q. In this paper we generalize conjugate pairs of sets to the setting of regular convolutions and study associated arithmetical functions. Particular attention is paid to arithmetical functions associated with k-free integers and k-th powers under regular convolution.
Keywords
- Conjugate pair
- Regular convolution
- Möbius function
- Totient function
- Inversion formula
2020 Mathematics Subject Classification
- 11A25
References
- Cohen, E. (1959). A class of residue systems (mod r) and related arithmetical functions. I: A generalization of Möbius inversion. Pacific Journal of Mathematics, 9, 13–23.
- Cohen, E. (1960). Arithmetical functions associated with the unitary divisors of an integer. Mathematische Zeitschrift, 74, 66–80.
- Haukkanen, P. (1988). Some generalized totient functions. The Mathematics Student, 56(1–4), 65–74.
- Haukkanen, P. (1999). Rational arithmetical functions of order (2, 1) with respect to regular convolutions. Portugaliae Mathematica, 56(3), 329–344.
- McCarthy, P. J. (1986). Introduction to Arithmetical Functions. Springer.
- Narkiewicz, W. (1963). On a class of arithmetical convolutions. Colloquium Mathematicum, 10(1), 81–94.
- Rao, M. G. (2014). On (P; S)-residue system modulo n. International Journal of
Mathematics and Computer Applications Research, 4(2), 69–74. - Sándor, J., & Crstici, P. (2004). Handbook of Number Theory II. Kluwer Academic.
- Sita Ramaiah, V. (1978). Arithmetical sums in regular convolutions. Journal für die reine und angewandte Mathematik, 303/304, 265–283.
- Sivaramakrishnan, R. (1979). Square-reduced residue systems (mod r) and related arithmetical functions. Canadian Mathematical Bulletin, 22(2), 207–220.
- Siva Rama Prasad, V., & Rao, M. G. (1994). A generalized Möbius inversion. Indian Journal of Pure and Applied Mathematics, 25(12), 1229–1232.
- Suryanarayana, D. (1971). New inversion properties of µ and µ∗. Elemente der Mathematik, 26, 136–138.
- Tóth, L. (1989). The unitary analogue of Pillai’s arithmetical function. Collectanea Mathematica, 40(1), 19–30.
Manuscript history
- Received: 8 September 2022
- Accepted: 17 October 2022
- Online First: 24 October 2022
Related papers
Cite this paper
Haukkanen, P. (2022). Arithmetical functions associated with conjugate pairs of sets under regular convolutions. Notes on Number Theory and Discrete Mathematics, 28(4), 656-665, DOI: 10.7546/nntdm.2022.28.4.656-665.