Mihoub Bouderbala and Meselem Karras
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 648–655
DOI: 10.7546/nntdm.2022.28.4.648-655
Full paper (PDF, 216 Kb)
Details
Authors and affiliations
Mihoub Bouderbala
![]()
Department of Mathematics, University of Djilali Bounaama
Khemis Miliana, FIMA Laboratory, Algeria
Meselem Karras
![]()
Department of Mathematics, University of Djilali Bounaama
Khemis Miliana, FIMA Laboratory, Algeria
Abstract
In this paper, we obtain asymptotic formula on the “hyperbolic” summation
![]()
such that
, where
denotes the Piltz divisor function, and
is the unitary analogue function of
.
Keywords
- Number of distinct prime divisors
- Hyperbolic summation
- Piltz divisor function
2020 Mathematics Subject Classification
- 11N37
- 11A25
- 11N36
References
- Bordellès, O. (2007). Mean values of generalized GCD-sum and LCM-sum functions. Journal of Integer Sequences, 10, Article 07.9.2.
- Bordellès, O. (2020). Arithmetic Tales. Advanced Edition, Springer (2nd edition).
- Heyman, R., & Tóth, L. (2021). On certain sums of arithmetic functions involving the GCD and LCM of two positive integers. Results in Mathematics, 76, Article 49.
- Karras, M., & Derbal, A. (2020). Mean value of an arithmetic function associated with the Piltz divisor function. Asian-European Journal of Mathematics, 13(03), Article 2050062.
- Sándor, J. (1989). On the arithmetical functions dk(n). Journal of Numerical Analysis and Approximation Theory. 18(1), 89–94.
- Sándor, J. (1996). On the arithmetical functions dk(n) and dk∗(n). Portugaliae Mathematica, 53(1), 107–115.
Manuscript history
- Received: 29 March 2022
- Revised: 22 September 2022
- Accepted: 22 October 2022
- Online First: 24 October 2022
Related papers
Cite this paper
Bouderbala, M., & Karras, M. (2022). Asymptotic formula of a “hyperbolic” summation related to the Piltz divisor function. Notes on Number Theory and Discrete Mathematics, 28(4), 648-655, DOI: 10.7546/nntdm.2022.28.4.648-655.
