Leonardo’s bivariate and complex polynomials

Milena Carolina dos Santos Mangueira, Renata Passos Machado Vieira, Francisco Regis Vieira Alves and Paula Maria Machado Cruz Catarino
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 1, Pages 115–123
DOI: 10.7546/nntdm.2022.28.1.115-123
Full paper (PDF, 225 Kb)

Details

Authors and affiliations

Milena Carolina dos Santos Mangueira
Department of Mathematics, Federal Institute of Education, Science and Technology of State of Ceara – IFCE
Treze of Maio, Brazil

Renata Passos Machado Vieira
Department of Mathematics, Federal Institute of Education, Science and Technology of State of Ceara – IFCE
Treze of Maio, Brazil

Francisco Regis Vieira Alves
Department of Mathematics, Federal Institute of Education, Science and Technology of State of Ceara – IFCE
Treze of Maio, Brazil

Paula Maria Machado Cruz Catarino
University of Trás-os-Montes and Alto Douro – UTAD
Vila Real, Portugal

Abstract

Given the purpose of mathematical evolution of Leonardo’s sequence, we have the prospect of introducing complex polynomials, bivariate polynomials and bivariate polynomials around these numbers. Thus, this article portrays in detail the insertion of the variable x, y and the imaginary unit i in the sequence of Leonardo. Nevertheless, the mathematical results from this process of complexification of these numbers are studied, correlating the mathematical evolution of that sequence.

Keywords

  • Leonardo complex bivariate polynomials
  • Leonardo polynomials
  • Leonardo sequence

2020 Mathematics Subject Classification

  • 11B37
  • 11B69

References

  1. Alves, F. R. V., & Catarino, P. M. M. C. (2017). A classe dos polinômios bivariados de Fibonacci (PBF): elementos recentes sobre a evolução de um modelo. Revista Thema, 14(1), 112–136.
  2. Alves, F. R. V., & Vieira, R. P. M. (2019). The Newton Fractal’s Leonardo Sequence Study with the Google Colab. International Electronic Journal of Mathematics Education, 15(2), Article em0575.
  3. Alves, F. R. V., Catarino, P. M., Vieira, R. P., & Mangueira, M. C. (2020). Teaching recurring sequences in Brazil using historical facts and graphical illustrations. Acta Didactica Napocensia, 13(1), 87–104.
  4. Asci, M., & Gurel, E. (2012). On bivariate complex Fibonacci and Lucas Polynomials. Conference on Mathematical Sciences ICM 2012, 11–14 March 2012.
  5. Catarino, P., & Borges, A. (2019). On Leonardo numbers. Acta Mathematica Universitatis Comenianae, 89(1), 75–86.
  6. De Oliveira, R. R. (2018). Engenharia Didática sobre o Modelo de Complexificação da Sequência Generalizada de Fibonacci: Relações Recorrentes n-dimensionais e Representações Polinomiais e Matriciais. Dissertação de Mestrado Acadêmico em Ensino de Ciências e Matemática, Instituto Federal de Educação, Ciência e Tecnologia do Estado do Ceará (IFCE).
  7. Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97–101.
  8. Vieira, R. P. M., Mangueira, M. C. dos S., Alves, F. R. V., & Catarino, P. M. M. C. (2020). A forma matricial dos números de Leonardo. Ciência e Natura, 42(3), Article e100.
  9. Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2019). Relações bidimensionais e identidades da sequência de Leonardo. Revista Sergipana de Matemática e Educação Matemática, 4(2), 156–173.

Manuscript history

  • Received: 25 February 2021
  • Revised: 17 January 2022
  • Accepted: 27 February 2022
  • Online First: 28 February 2022

Related papers

Cite this paper

Mangueira, M. C. S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2022). Leonardo’s bivariate and complex polynomials. Notes on Number Theory and Discrete Mathematics, 28(1), 115-123, DOI: 10.7546/nntdm.2022.28.1.115-123.

Comments are closed.