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Abstract: Given the purpose of mathematical evolution of Leonardo’s sequence, we have the
prospect of introducing complex polynomials, bivariate polynomials and bivariate polynomials
around these numbers. Thus, this paper portrays in detail the insertion of the variable x, y and the
imaginary unit i in the sequence of Leonardo. Nevertheless, the mathematical results from this
process of complexification of these numbers are studied, correlating the mathematical evolution
of that sequence.
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1 Introduction
Leonardo’s sequence was initially presented by Catarino and Borges [5]. Historically, it is believed
that these numbers have been studied by Leonardo de Pisa, known as Leonardo Fibonacci, and
therefore not proven in any work in the literature, due to the scarcity of research [3]. This sequence
has been studied and evolved mathematically, as we can see in the works of [2, 7–9].

Thus, we have the Leonardo sequence satisfying the following recurrence relationship:∗

Len = Len−1 + Len−2 + 1, n ≥ 2. (1)

And yet, for n+ 1 one can rewrite this recurrence relationship as Len+1 = Len + Len−1 + 1.
Also, subtracting Len − Len+1 gives another recurrence relation for this sequence.

Len − Len+1 = Len−1 + Len−2 + 1− Len − Len−1 − 1,

Len+1 = 2Len − Len−2, (2)

where Le0 = Le1 = 1 are the initial conditions.
Thus, the initial values of the sequence are as follows: 1, 1, 3, 5, 9, 15, 25, . . . .
In order to continue the mathematical evolutionary process of Leonardo’s numbers, in this

paper, we will present a study around Leonardo’s numbers in their polynomial, bivariate
polynomial and complex bivariate polynomial form.

We can find sequences in their polynomial form in works presented in the literature of pure
mathematics, and yet, according to [6] the complex bivariate polynomials encompasses the
polynomial terms of the studied sequence in an evolutionary process of its algebraic form. That
is, first, polynomials are considered with one variable and two variables, then the imaginary
component i is inserted, then these polynomials are explored in their complex form.

2 Leonardo’s polynomials
Based on the Fibonacci polynomials, studied in 1883 by the mathematicians Eugène Catalan
(1814–1894) and Ernst Erich Jacobsthal (1881–1965) [1], one can then introduce Leonardo’s
polynomials.

Definition 2.1. Leonardo’s polynomials, ln(x), for n ≥ 3 are given by:

ln(x) = 2xln−1(x)− ln−3(x),

with l0(x) = l1(x) = 1 and l2(x) = 3.

The first terms of the sequence are given in the following Table 1.

∗ Post-Publication Correction Note: The notation used in Eq. (1) and (2) was corrected in the online version
on 11 May 2022.
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n ln(x)

0 1

1 1

2 3

3 6x− 1

4 12x2 − 2x− 1

5 24x3 − 4x2 − 2x− 3

6 48x4 − 8x3 − 4x2 − 12x+ 1
... ...

Table 1. First terms of Leonardo’s polynomial sequence

Theorem 2.2. The matrix form of Leonardo’s polynomials, for n ≥ 2 and with n ∈ N, is given
by:

[
3 1 1

]2x 1 0

0 0 1

−1 0 0


n

=
[
ln+2(x) ln+1(x) ln(x)

]
.

Proof. We use the principle of finite induction.
For n = 2, we have that:

[
3 1 1

]2x 1 0

0 0 1

−1 0 0


2

=
[
12x2 − 2x− 1 6x− 1 3

]
=

[
l4(x) l3(x) l2(x)

]
.

Validating equality.
Assuming it is valid for n = k, k ∈ N, we have that:

[
3 1 1

]2x 1 0

0 0 1

−1 0 0


k

=
[
lk+2(x) lk+1(x) lk(x)

]
.

Now, verifying that it is valid for n = k + 1, we have that:

[
3 1 1

]2x 1 0

0 0 1

−1 0 0


k 2x 1 0

0 0 1

−1 0 0

 =
[
lk+2(x) lk+1(x) lk(x)

]2x 1 0

0 0 1

−1 0 0


=

[
2xlk+2(x)− lk(x) lk+2(x) lk+1(x)

]
=

[
lk+3(x) lk+2(x) lk+1(x)

]
.

The characteristic equation of this Leonardo polynomial sequence, is given by t3 − 2xt2 +1 = 0,
where x is the polynomial variable. So, we have to t1, t2 and t3 are the roots of the characteristic
equation.
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Theorem 2.3. Binet’s formula of Leonardo’s polynomials, with n ∈ Z, is given by:

ln(x) = αtn1 + βtn2 + γtn3 ,

where t1, t2, t3 are the roots of the characteristic equation t3 − 2xt2 + 1 = 0 and

α =
3 + (−t2 − t3) + t2t3
t21 − t1t2 − t1t3 + t2t3

, β =
3 + (−t1 − t3) + t1t3
t22 − t2t3 − t1t2 + t1t3

, γ =
3 + (−t1 − t2) + t1t2
t23 + t1t2 − t1t3 − t2t3

.

Proof. Through the Binet formula ln = αtn1 + βtn2 + γtn3 and the recurrence of Leonardo’s
polynomials ln(x) = 2xln−1(x)−ln−3(x), with the initial values l0(x) = l1(x) = 1 and l2(x) = 3,
it is possible to obtain the following system of equations:

α + β + γ = 1

αt1 + βt2 + γt3 = 1

αt21 + βt22 + γt23 = 3

.

Solving the system, we have that:

α =
3 + (−t2 − t3) + t2t3
t21 − t1t2 − t1t3 + t2t3

,

β =
3 + (−t1 − t3) + t1t3
t22 − t2t3 − t1t2 + t1t3

,

γ =
3 + (−t1 − t2) + t1t2
t23 + t1t2 − t1t3 − t2t3

.

Theorem 2.4. The generating function of Leonardo’s polynomial sequence, forn ∈ N, is given by:

g(ln(x), t) =
∞∑
n=0

ln(x)t
n =

1− 5t+ t2

(1− 2xt+ t3)

Proof. Let g(ln(x), t) be the generating function of Leonardo’s polynomial sequence ln(x), then:

g(ln(x), t)− g(ln(x)2xt+ g(ln(x)t
3 = l0(x) + (l1(x)− 2l0(x))t+ (l2(x)− 2l1(x))t

2,

g(ln(x), t)(1− 2xt+ t3) = 1− 5t+ t2,

g(ln(x), t) =
1− 5t+ t2

(1− 2xt+ t3)
.

3 Leonardo’s bivariate polynomials
In this section, Leonardo’s bivariate polynomials will be introduced. The first terms of this sequence
are given in Table 2.

Definition 3.1. Leonardo’s bivariate polynomials, ln(x, y), for n ≥ 3 are given by:

ln(x, y) = 2xln−1(x, y)− yln−3(x, y),

with l0(x, y) = l1(x, y) = 1 and l2(x, y) = 3.
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n ln(x, y)

0 1

1 1

2 3

3 6x− y

4 12x2 − 2xy − y

5 24x3 − 4x2y − 2xy − 3y

6 48x4 − 8x3y − 4x2y − 12xy + y2

... ...

Table 2. First terms of Leonardo’s bivariate polynomial sequence

It is observed that with the values x = y = 1, we have Leonardo’s original sequence, as shown
in Table 3.

n ln(1,1)

0 1

1 1

2 3

3 5

4 9

5 15

6 25
... ...

Table 3. First terms of Leonardo’s bivariate polynomial sequence

Theorem 3.2. The matrix form of Leonardo’s bivariate polynomials, for n ≥ 2 and with n ∈ N,
is given by:

[
3 1 1

]2x 1 0

0 0 1

−y 0 0


n

=
[
ln+2(x, y) ln+1(x, y) ln(x, y)

]
.

Proof. Analogously to the proof of Theorem 2.2, the present theorem can be validated.

The characteristic equation of Leonardo’s bivariate polynomial sequence is given by
q3−2xq2+y=0, on what x and y are the polynomial variables. So, we have q1, q2 and q3.

Theorem 3.3. Binet’s formula of Leonardo’s bivariate polynomials, with n ∈ Z, is given by:

ln(x, y) = αqn1 + βqn2 + γqn3 ,

on what q1, q2, q3 are the roots of the characteristic equation q3 − 2xq2 + y = 0 and

α =
3 + (−q2 − q3) + q2q3
q21 − q1q2 − q1q3 + q2q3

, β =
3 + (−q1 − q3) + q1q3
q22 − q2q3 − q1q2 + q1q3

, γ =
3 + (−q1 − q2) + q1q2
q23 + q1q2 − q1q3 − q2q3

.
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Proof. Through the Binet formula ln(x, y) = αqn1 + βqn2 + γqn3 and the recurrence of Leonardo’s
bivariate polynomials ln(x, y) = 2xln−1(x, y) − yn−3(x, y), with the initial values l0(x, y) =

l1(x, y) = 1 and l2(x, y) = 3, it is possible to obtain the following system of equations:
α + β + γ = 1

αq1 + βq2 + γq3 = 1

αq21 + βq22 + γq23 = 3

Solving the system, we have that:

α =
3 + (−q2 − q3) + q2q3
q21 − q1q2 − q1q3 + q2q3

,

β =
3 + (−q1 − q3) + q1q3
q22 − q2q3 − q1q2 + q1q3

,

γ =
3 + (−q1 − q2) + q1q2
q23 + q1q2 − q1q3 − q2q3

.

Theorem 3.4. The generator function of Leonardo’s bivariate polynomial sequence, for n ∈ N,
is given by:

g(ln(x, y), t) =
∞∑
n=0

ln(x, y)t
n =

1− 5t+ t2

(1− 2xt+ yt3)
.

Proof. Be g(ln(x, y), t) the generating function of Leonardo’s polynomial sequence ln(x, y), then:

g(ln(x, y), t)− g(ln(x, y)2xt+ g(ln(x, y)yt
3 = l0(x, y) + (l1(x, y)− 2l0(x, y))t

+ (l2(x, y)− 2l1(x, y))t
2

g(ln(x, y), t)(1− 2xt+ yt3) = 1− 5t+ t2

g(ln(x, y), t) =
1− 5t+ t2

(1− 2xt+ yt3)
.

4 Leonardo’s complex bivariate polynomials
In this section, Leonardo’s complex bivariate polynomials will be introduced.

Definition 4.1. Leonardo’s complex bivariate polynomials, ln(ix, y), for n ≥ 3 are given by:

ln(ix, y) = 2xiln−1(ix, y)− yln−3(ix, y),

with l0(ix, y) = l1(ix, y) = 1, l2(ix, y) = 3 and i2 = −1.

The first terms of this sequence are given in the following Table 4.
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n ln(ix, y)

0 1

1 1

2 3

3 6xi− y

4 −12x2 − 2xyi− y

5 −24x3i− 2xyi+ 4x2y − 3y

6 48x4 + 4x2y + y2 − 12xyi+ 8x3yi
... ...

Table 4. First terms of Leonardo’s complex bivariate polynomial sequence

Theorem 4.2. The matrix form of Leonardo’s complex bivariate polynomials, for n ≥ 2 and with
n ∈ N, is given by:

[
3 1 1

]2xi 1 0

0 0 1

−y 0 0


n

=
[
ln+2(ix, y) ln+1(ix, y) ln(ix, y)

]
.

Proof. Analogously to the proof of Theorem 2.2, the present theorem can be validated.

The characteristic equation of Leonardo’s complex bivariate polynomial sequence is given by
v3 − 2xiv2 + y = 0, on what x and y are the polynomial variables. So, we have to v1, v2 and v3
are the roots of the characteristic equation.

Theorem 4.3. Binet’s formula of Leonardo’s complex bivariate polynomials, with n ∈ Z, is given
by:

ln(ix, y) = αvn1 + βvn2 + γvn3 ,

on what v1, v2, q3 are the roots of the characteristic equation v3 − 2xiv2 + v = 0 and

α =
3 + (−v2 − v3) + v2v3
v21 − v1v2 − v1v3 + v2v3

, β =
3 + (−v1 − v3) + v1v3
v22 − v2v3 − v1v2 + v1v3

, γ =
3 + (−v1 − v2) + v1v2
v23 + v1v2 − v1v3 − v2v3

.

Proof. Through the Binet formula ln(ix, y) = αvn1 +βvn2 +γvn3 and the recurrence of Leonardo’s
complex bivariate polynomials ln(ix, y) = 2xiln−1(ix, y) − yn−3(ix, y), with the initial values
l0(ix, y) = l1(ix, y) = 1 and l2(ix, y) = 3, it is possible to obtain the following system of
equations: 

α + β + γ = 1

αv1 + βv2 + γv3 = 1

αv21 + βv22 + γv23 = 3

.

Solving the system, we have that:

α =
3 + (−v2 − v3) + v2v3
v21 − v1v2 − v1v3 + v2v3

,

β =
3 + (−v1 − v3) + v1v3
v22 − v2v3 − v1v2 + v1v3

,

γ =
3 + (−v1 − v2) + v1v2
v23 + v1v2 − v1v3 − v2v3

.
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Theorem 4.4. The generating function of Leonardo’s complex bivariate polynomial sequence, for
n ∈ N, is given by:

g(ln(ix, y), t) =
∞∑
n=0

ln(ix, y)t
n =

1− 5t+ t2

(1− 2ixt+ yt3)
.

Proof. Let g(ln(ix, y), t) be the generating function of Leonardo’s complex bivariate polynomial
sequence ln(ix, y), then:

g(ln(ix, y), t)− g(ln(ix, y)2ixt+ g(ln(ix, y)yt
3 = l0(ix, y) + (l1(ix, y)− 2l0(ix, y))t

+ (l2(ix, y)− 2l1(ix, y))t
2,

g(ln(ix, y), t)(1− 2ixt+ yt3) = 1− 5t+ t2,

g(ln(ix, y), t) =
1− 5t+ t2

(1− 2ixt+ yt3)
.

5 Conclusion
This work presents a study around the Leonardo sequence, continuing the mathematical
evolutionary process of this sequence, we present its polynomial form, its bivariate polynomial
form and its complex bivariate polynomial form. Leonardo’s sequence numbers were worked
on functions of variables and explored in its complex form after the insertion of the imaginary
component i. It was possible to present the recurrence of these numbers, their generating matrix,
characteristic equations, Binet formula and generating function.

For future work, investigations on these polynomial numbers, bivariate polynomials and
complex bivariate polynomials are proposed, finding applicability of this mathematical content
in other areas.
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