I. Kátai and B. M. Phong
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 143–154
DOI: 10.7546/nntdm.2021.27.3.143-154
Full paper (PDF, 177 Kb)
Details
Authors and affiliations
I. Kátai ![]()
Department of Computer Algebra, University of Eötvös Loránd
1117 Budapest, Hungary
B. M. Phong ![]()
Department of Computer Algebra, University of Eötvös Loránd
1117 Budapest, Hungary
Abstract
Let
and
, where
,
denote the set of nonnegative integers and complex numbers, respectively. We give all functions
which satisfy the relation
![]()
for every
. We also give all arithmetical functions
which satisfy the relation
![]()
for every
, where
denotes the set of all positive integers.
Keywords
- Arithmetical function
- Function equation
- Sums of squares
- Lagrange’s Four-Square Theorem
2020 Mathematics Subject Classification
- 11K65
- 11N37
- 11N64
References
- Bašić, B. (2014). Characterization of arithmetic functions that preserve the sum-of-squares operation. Acta Mathematica Sinica, 4, 689–695.
- Chung, P. V. (1996). Multiplicative functions satisfying the equation f(m2+n2) = f(m2)+f(n2). Mathematica Slovaca, 46, 165–171.
- Kátai, I., & Phong, B. M. M. (2021). A characterization of functions using Lagrange’s Four-Square Theorem. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 52. (accepted)
- Kátai, I., & Phong, B. M. M. (2021). Arithmetical functions commutable with sums of squares II. Mathematica Pannonica. (submitted)
- Khanh, B. M. M. (2017). On conjecture concerning the functional equation. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 46, 123–135.
- Khanh, B. M. M. (2019). A note on a result of B. Bojan. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 49, 285–297.
- Khanh, B. M. M. (2021). On the equation f(n2 + Dm2 + k) = f(n)2 + Df(m)2 + k, Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 52. (accepted)
- Park, P.-S. (2018). Multiplicative functions commutable with sums of squares. International Journal of Number Theory, 2, 469–478.
- Park, P.-S. (2018). On k-additive uniqueness of the set of squares for multiplicative functions. Aequationes Mathematicae, 92, 487–495.
Related papers
Cite this paper
Kátai, I., & Phong, B. M. (2021). Arithmetical functions commutable with sums of squares. Notes on Number Theory and Discrete Mathematics, 27(3), 143-154, DOI: 10.7546/nntdm.2021.27.3.143-154.
