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Abstract: Let k ∈ N0 and K ∈ C, where N0, C denote the set of nonnegative integers and
complex numbers, respectively. We give all functions f, h1, h2, h3, h4 : N0 → C which satisfy
the relation

f(x21 + x22 + x23 + x24 + k) = h1(x1) + h2(x2) + h3(x3) + h4(x4) +K

for every x1, x2, x3, x4 ∈ N0. We also give all arithmetical functions F,H1, H2, H3, H4 : N→ C
which satisfy the relation

F (x21 + x22 + x23 + x24 + k) = H1(x1) +H2(x2) +H3(x3) +H4(x4) +K

for every x1, x2, x3, x4 ∈ N, where N denotes the set of all positive integers.
Keywords: Arithmetical function, Function equation, Sums of squares, Lagrange’s Four-Square
Theorem.
2020 Mathematics Subject Classification: 11K65, 11N37, 11N64.

1 Introduction

Let, as usual, N, N0, C be the set of positive integers, nonnegative integers and complex numbers,
respectively.

Recently, in [3] we gave all solutions of the arithmetical functions f, g, F,G : N0 → C, which
satisfy the relations
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f(a2 + b2 + c2 + d2) = g(a2) + g(b2) + g(c2) + g(d2)

and
F (a2 + b2 + c2 + d2) = G(a2 + b2) +G(c2 + d2)

for every a, b, c, d ∈ N0. We proved that there are numbers A,B,C,D ∈ C such that

f(n) = An+ 4B, g(m2) = Am2 +B

and
F (n) = Cn+ 2D, G(n2 +m2) = C(n2 +m2) +D

hold for every n,m ∈ N0.
On the other hand, P. V. Chung [2] studied such multiplicative function for which

f(m2 + n2) = f(m2) + f(n2) holds for all m,n ∈ N. B. Bašić [1] characterized all arithmetical
functions such that f(n2 + m2) = f(n)2 + f(m)2, which is slightly different from Chung’s
condition. Poo-Sung Park in [8] and [9] proved that if a multiplicative function f and k ∈ N,
k ≥ 3 satisfy one of following two conditions

f(x21 + · · ·+ x2k) = f(x1)
2 + · · ·+ f(xk)

2

or
f(x21 + · · ·+ x2k) = f(x21) + · · ·+ f(x2k)

for all positive integers x1, . . . , xk, then f is the identity function.
Recently, B. M. M. Khanh [5–7] gave all solutions of the following equation

f(n2 +Dm2 + k) = f(n)2 +Df(m)2 + k,

where k,D ∈ N. She proved that the solution f of this equation is one of the following assertions:

a) f(n) = εD,k(n)
1−
√
1− 4Dk − 4k

2(D + 1)
for every n ∈ N,

b) f(n) = εD,k(n)
1 +
√
1− 4Dk − 4k

2(D + 1)
for every n ∈ N,

c) f(n) = εD,k(n)n for every n ∈ N,

where εD,k : N→ {−1, 1} is an arithmetical function satisfying the relation

εD,k(n
2 +Dm2 + k) = 1 for every n,m ∈ N.

In this paper we improve these theorems by proving the following results:

Theorem 1.1. Let k ∈ N0 and K ∈ C. Assume that the arithmetical functions f, h1, h2, h3, h4 :

N0 → C satisfy the relation

f(x21 + x22 + x23 + x24 + k) = h1(x1) + h2(x2) + h3(x3) + h4(x4) +K

for every x1, x2, x3, x4 ∈ N0. Then there are numbers A,B1, B2, B3, B4 ∈ C such that

hi(m) = Am2 +Bi (i = 1, . . . , 4)

and
f(n+ k) = An+B1 +B2 +B3 +B4 +K

hold for every n,m ∈ N0.
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Theorem 1.2. Let k ∈ N and K ∈ C. Assume that the arithmetical functions F,H1, H2, H3, H4 :

N→ C satisfy the relation

F (x21 + x22 + x23 + x24 + k) = H1(x1) +H2(x2) +H3(x3) +H4(x4) +K

for every x1, x2, x3, x4 ∈ N. Then there are numbers C,D1, D2, D3, D4 ∈ C such that

Hi(m) = Am2 +Di (i = 1, . . . , 4)

and

F (x21 + x22 + x23 + x24 + k) = C(x21 + x22 + x23 + x24) +D1 +D2 +D3 +D4 +K

hold for every m,x1, x2, x3, x4 ∈ N.

We note that in the proof of Theorem 1.1, we use special values for the variables and the value
xi = 0 is of course an interesting choice. This leads to simple proofs that we present. But we also
investigate what happens when we discard the possibility xi = 0 and in fact, similar results hold.

We derive the following corollaries from Theorem 1.1 and Theorem 1.2.

Corollary 1.1. Let k ∈ N0, ` ∈ N, ` ≥ 4 and K ∈ C. Assume that the arithmetical functions
f, g1, . . . , g` : N0 → C satisfy the relation

f(x21 + · · ·+ x2` + k) = g1(x1)
2 + · · ·+ g`(x`)

2 +K

for every x1, . . . , x` ∈ N0. Then there are numbers A,B1, . . . , B` ∈ C such that

gi(m)2 = Am2 +Bi (i = 1, . . . , `)

and
f(n+ k) = An+B1 + · · ·+B` +K

hold for every n,m ∈ N0.

Corollary 1.2. Let k ∈ N0, ` ∈ N, ` ≥ 4 and K ∈ C. Assume that the arithmetical functions
f, g1, . . . , g` : N0 → C satisfy the relation

f(x21 + · · ·+ x2` + k) = g1(x
2
1) + · · ·+ g`(x

2
`) +K

for every x1, . . . , x` ∈ N0. Then there are numbers A,B1, . . . , B` ∈ C such that

gi(m
2) = Am2 +Bi (i = 1, . . . , `)

and
f(n+ k) = An+B1 + · · ·+B` +K

hold for every n,m ∈ N0.

Corollary 1.3. Let k ∈ N0, ` ∈ N, ` ≥ 4 and K ∈ C. Assume that the arithmetical functions
F,G1, . . . , G` : N→ C satisfy the relation

F (x21 + · · ·+ x2` + k) = G1(x1)
2 + · · ·+G`(x`)

2 +K

for every x1, . . . , x` ∈ N. Then there are numbers C,D1, . . . , D` ∈ C such that

Gi(m)2 = Cm2 +Di (i = 1, . . . , `)
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and
F (x21 + · · ·+ x2` + k) = C(x21 + · · ·+ x2`) +D1 + · · ·+D` +K

hold for every x1, . . . , x` ∈ N, m ∈ N.

Corollary 1.4. Let k ∈ N0, ` ∈ N, ` ≥ 4 and K ∈ C. Assume that the arithmetical functions
F,G1, . . . , G` : N→ C satisfy the relation

F (x21 + · · ·+ x2` + k) = G1(x
2
1) + · · ·+G`(x

2
`) +K

for every x1, . . . , x` ∈ N. Then there are numbers C,D1, . . . , D` ∈ C such that

Gi(m
2) = Cm2 +Di (i = 1, . . . , `)

and
F (x21 + · · ·+ x2` + k) = C(x21 + · · ·+ x2`) +D1 + · · ·+D` +K

hold for every x1, . . . , x` ∈ N, m ∈ N.

Corollary 1.5. Let ` ≥ 4. Assume that the arithmetical functions F : N→ C satisfies the relation

F (x21 + · · ·+ x2`) = F (x1)
2 + · · ·+ F (x`)

2

for every x1, . . . , x` ∈ N. Then one of the following assertions holds:

a) F (n) = 0 for every n ∈ N,

b) F (n) =
ε(n)

`
for every n ∈ N,

c) F (n) = ε(n)n for every n ∈ N,

where ε(n) ∈ {−1, 1} and ε(x21 + · · ·+ x2`) = 1.

Corollary 1.6. Let ` ≥ 4. Assume that the arithmetical functions F : N→ C satisfies the relation

F (x21 + · · ·+ x2`) = F (x21) + · · ·+ F (x2`)

for every x1, . . . , x` ∈ N. Then there is a complex C such that

F (m2) = Cm2 for every m ∈ N

and
F (x21 + · · ·+ x2`) = C(x21 + · · ·+ x2`)

hold for every m,x1, . . . , x` ∈ N.

2 Proof of Theorem 1.1

First we prove some lemmas.

Lemma 2.1. ( Lagrange’s Four-Square Theorem) Every positive integer can be written as the
sum of at most four squares.
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Lemma 2.2. Let k ∈ N0 and K ∈ C. Assume that the arithmetical functions f, h1, h2, h3, h4 :

N0 → C satisfy the relation

f(x21 + x22 + x23 + x24 + k) = h1(x1) + h2(x2) + h3(x3) + h4(x4) +K (1)

for every x1, x2, x3, x4 ∈ N0. Then there are numbers A,B1, B2, B3, B4 ∈ C such that

hi(m) = Am2 +Bi (i = 1, . . . , 4) (2)

Proof. Let i ∈ {2, 3, 4}. Then by swapping the positions of x1 and xi in (1), we get the following
equations

f(x21 + · · ·+ x2i + · · ·+ x24 + k) = h1(x1) + · · ·+ hi(xi) + · · ·+ h4(x4) +K

and

f(x21 + · · ·+ x2i + · · ·+ x24 + k) = f(x2i + · · ·+ x21 + · · ·+ x24 + k)

= h1(xi) + · · ·+ hi(x1) + · · ·+ h4(x4) +K,

which implies that

h1(x1) + hi(xi) = h1(xi) + hi(x1) and hi(x1)− h1(x1) = hi(xi)− h1(xi)

hold for every x1, xi ∈ N0. Consequently hi(x1) − h1(x1) = hi(0) − h1(0). Let H1 = 0,
Hi = hi(0)− h1(0) for i ∈ {2, 3, 4}. Then

hi(n) = h1(n) +Hi for every n ∈ N0 and i ∈ {1, 2, 3, 4}.

Let h = h1 and H = H1 +H2 +H3 +H4. Thus

hi(n) = h(n) +Hi for every n ∈ N0 (i = 1, . . . , 4) (3)

and
f(x21 + · · ·+ x24 + k) = h(x1) + · · ·+ h(x4) +H +K (4)

hold for every x1, . . . , x4 ∈ N0.
In the following, let A = h(1)− h(0) and B = h(0). We will prove that

h(m) = Am2 +B for every m ∈ N. (5)

It is obvious from the definitions of A and B that (5) is true for m = 0 and m = 1.
Assume that (5) is true for every m ≤ N , where N ≥ 1. Since

(N + 1)2 + (N − 1)2 + 02 + 02 + k = N2 +N2 + 12 + 12 + k,

we infer from (4) that

h(N + 1) + h(N − 1) + 2h(0) +H +K = 2h(N) + 2h(1) +H +K.
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Thus, from our assumptions, we have

h(N + 1) = 2h(N)− h(N − 1) + 2h(1)− 2h(0)

= 2(AN2 +B)− (A(N − 1)2 +B) + 2A

= A(N + 1)2 +B,

which proves that (5) holds for N + 1, and so (5) holds for every m ∈ N.
Finally, we obtain from (3) and (5) that

hi(m) = h(m) +Hi = Am2 + (B +Hi) = Am2 +Bi for every m ∈ N0,

where Bi = B +Hi. Thus, we proved that (2) is true.
Lemma 2.2 is proved.

Proof of Theorem 1.1
We prove that

f(n+ k) = An+B1 +B2 +B3 +B4 +K for every n ∈ N0.

We infer from Lemma 1 that for every n ∈ N0 there exist x1, x2, x3, x4 ∈ N0 such that

n = x21 + x22 + x23 + x24.

Then we infer from (1) and (2) that

f(n+ k) = f(x21 + x22 + x23 + x24 + k) = h1(x
2
1) + h2(x

2
2) + h3(x

2
3) + h4(x

2
4) +K =

=
(
Ax21 +B1

)
+
(
Ax22 +B2

)
+
(
Ax23 +B3

)
+
(
Ax24 +B4

)
+K =

= An+B1 +B2 +B3 +B4 +K

is satisfied for every n ∈ N0.
The proof of Theorem 1.1 is finished.

3 Proof of Theorem 1.2

In this section we assume that the numbers k ∈ N, K ∈ C and the arithmetical functions
F,H1, H2, H3, H4 : N→ C satisfy the relation

F (x21 + x22 + x23 + x24 + k) = H1(x1) +H2(x2) +H3(x3) +H4(x4) +K (6)

for every x1, x2, x3, x4 ∈ N. We prove the following lemma.

Lemma 3.1. There are numbers C,D1, D2, D3, D4 ∈ C such that

Hi(m) = Cm2 +Di (i = 1, . . . , 4) (7)

is satisfied for every m ∈ N.

Proof. Similarly as in the proof of Lemma 2.2, let i ∈ {2, 3, 4} and by swapping the positions of
x1 and xi in (6), we obtain that

H1(x1) +Hi(xi) = H1(xi) +Hi(x1) and Hi(x1)−H1(x1) = Hi(xi)−H1(xi)
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hold for every x1, xi ∈ N. Consequently Hi(x1)−H1(x1) = Hi(1)−H1(1), and so

Hi(n) = H1(n) +Hi

holds for every n ∈ N, i ∈ {1, 2, 3, 4}, whereH1 = 0,Hi = Hi(1)−H1(1) for every i ∈ {2, 3, 4}.
Let H = H1 andH = H1 +H2 +H3 +H4. Then

Hi(n) = H(n) +Hi for every n ∈ N (i = 1, . . . , 4) (8)

and
F (x21 + · · ·+ x24 + k) = H(x1) + · · ·+H(x4) +H +K (9)

hold for every x1, . . . , x4 ∈ N.
In the following, let

C =
H(2)−H(1)

3
and D =

4H(1)−H(2)

3
.

We will prove that
H(m) = Cm2 +D for every m ∈ N. (10)

It is obvious from the definitions of C and D that (10) is true for m = 1 and m = 2.
In the following we write [a, b, c, d, x, y, z, t] ∈ E if a, b, c, d, x, y, z, t ∈ N, a ≥ b ≥ c ≥ d ≥ 1, x ≥ y ≥ z ≥ t ≥ 1

a2 + b2 + c2 + d2 = x2 + y2 + z2 + t2.

It is clear from (9) that If [a, b, c, d, x, y, z, t] ∈ E,
then H(a) = H(x) +H(y) +H(z) +H(t)−H(b)−H(c)−H(d).

(11)

Since [4, 2, 2, 2, 3, 3, 3, 1] ∈ E and [5, 1, 1, 1, 3, 3, 3, 1] ∈ E, we have

H(4) = H(1)− 3H(2) + 3H(3),

H(5) = −2H(1) + 3H(3).

On the other hand, we infer from the fact [5, 2, 2, 1, 4, 4, 1, 1] ∈ E that H(5) + 2H(2)−H(1)−
2H(4) = 0, which implies that −5H(1) + 8H(2)− 3H(3) = 0. Thus, we have

H(3) =
−5H(1) + 8H(2)

3
= 9

H(2)−H(1)

3
+

4H(1)−H(2)

3
= C · 32 +D,

H(4) = H(1)− 3H(2) + (−5H(1) + 8H(2)) = −4H(1) + 5H(2) = C · 42 +D,

H(5) = −2H(1) + (−5H(1) + 8H(2)) = −7H(1) + 8H(2) = C · 52 +D.

Thus we have proved that (10) holds for m ∈ {1, 2, 3, 4, 5}.
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Now assume that (10) holds for every m ≤ N , where N ≥ 5. Using the fact that

(N + 1)2 + (N − 1)2 + 22 + 22 = N2 +N2 + 32 + 12,

we infer from (11) that

H(N + 1) = 2H(N)−H(N − 1) +H(3) +H(1)− 2H(2),

which with our assumptions implies

H(N + 1) = 2
(
CN2 +D

)
−
(
C(N − 1)2 +D

)
+ (9C +D) + (C +D)− 2 (4C +D)

= C(N + 1)2 +D.

Thus, we have proved that (10) holds for N + 1, consequently (10) holds for every m ∈ N.
Finally, we obtain from (8) and (10) that

Hi(m) = H(m) +Hi = Cm2 +D +Hi = Cm2 +Di (i = 1, . . . , 4),

where Di = D +Hi.
The proof of Lemma 3.1 is finished.

Proof of Theorem 1.2
Assume that the numbers k∈N, K∈C and the arithmetical functions F,H1, H2, H3, H4 : N→C
satisfy the relation (6). Then, by using Lemma 3.1, we have

F (x21 + x22 + x23 + x24 + k) = H1(x1) +H2(x2) +H3(x3) +H4(x4) +K

=
(
Cx21 +D1

)
+
(
Cx22 +D2

)
+
(
Cx23 +D3

)
+
(
Cx24 +D4

)
+K

= C
(
x21 + x22 + x23 + x24

)
+D1 +D2 +D3 +D4 +K

for every x1, x2, x3, x4 ∈ N.
Theorem 1.2 is proved.

4 Proofs of corollaries

Proof of Corollary 1.1
Assume that k ∈ N0, ` ∈ N, ` ≥ 4, K ∈ C and the arithmetical functions f, g1, . . . , g` : N0 → C
satisfy the relation

f(x21 + · · ·+ x2` + k) = g1(x1)
2 + · · ·+ gk(x`)

2 +K (12)

for every x1, . . . , x` ∈ N0.
Let g∈{g1,. . . ,g`} be arbitrary. Without loss of generality, we may assume that g∈{g1,g2,g3,g4}.

Since ` ≥ 4, putting x5 = · · · = x` = 0 into (12), we have

f(x21 + x22 + x23 + x24 + k)=
(
g1(x1)

2 + g2(x2)
2 + g3(x3)

2 + g4(x4)
2
)
+g5(0) + · · ·+ g`(0) +K.
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Then, by applying Theorem 1.1, there are A,B1, B2, B3, B4 ∈ C such that

g1(m)2 = Am2 +B1, g2(m)2 = Am2 +B2, g3(m)2 = Am2 +B3, g4(m)2 = Am2 +B4

hold for every m ∈ N0. Thus, we have

g(m)2 ∈ {Am2 +B1, Am
2 +B2, Am

2 +B3, Am
2 +B4}.

Since g ∈ {g1, . . . , g`} be arbitrary, it follows from the above result that for each i ∈ {1, . . . , `}
there is Bi ∈ C such that gi(m)2 = Am2 +Bi. Thus, it follows from Lemma 2.1 and (12) that

f(n+ k) = An+B1 + · · ·+B` +K

hold for every n,m ∈ N0. The proof of Corollary 1.1 is completed.

Proof of Corollary 1.2
Assume that k ∈ N0, ` ∈ N, ` ≥ 4, K ∈ C and the arithmetical functions f, g1, . . . , g` : N0 → C
satisfy the relation

f(x21 + · · ·+ x2` + k) = g1(x
2
1) + · · ·+ gk(x

2
`) +K (13)

for every x1, . . . , x` ∈ N0.
Let g ∈ {g1, . . . , g`} be arbitrary. Without loss of generality, we may assume that

g ∈ {g1, g2, g3, g4}.
Similarly as the proof of Corollary 1.2, there are A,B1, B2, B3, B4 ∈ C such that

g1(m
2) = Am2 +B1, g2(m

2) = Am2 +B2, g3(m
2) = Am2 +B3, g4(m

2) = Am2 +B4

hold for every m ∈ N0.
Thus, we have

g(m2) ∈ {Am2 +B1, Am
2 +B2, Am

2 +B3, Am
2 +B4}.

Since g ∈ {g1, . . . , g`} be arbitrary, it follows from the above result that for each i ∈ {1, . . . , `}
there is Bi ∈ C such that gi(m2) = Am2 +Bi. Thus, it follows from Lemma 2.1 and (12) that

f(n+ k) = An+B1 + · · ·+B` +K

hold for every n,m ∈ N0.
The proof of Corollary 1.2 is completed.

Proof of Corollary 1.3 and Corollary 1.4
We can prove Corollary 1.3 and Corollary 1.4 similarly as in the proof of Corollary 1.1 and
Corollary 1.2. Hence, we omit these proofs.

Proof of Corollary 1.5
Assume that ` ≥ 4 and the arithmetical functions F : N→ C satisfy the relation

F (x21 + · · ·+ x2`) = F (x1)
2 + · · ·+ F (x`)

2
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for every x1, . . . , x` ∈ N. From Corollary 1.3, we have

F (m)2 = Cm2 +D and F (x21 + · · ·+ x2`) = C(x21 + · · ·+ x2`) + `D.

These imply that (
C(x21 + · · ·+ x2`) + `D

)2
= C(x21 + · · ·+ x2`)

2 +D

holds for every x1, . . . , x` ∈ N, consequently
C2 = C

CD = 0(
`D
)2

= D.

The solutions of this system are:

(C,D) ∈
{(

0, 0
)
,
(
0,

1

`2

)
,
(
1, 0
)}
.

Therefore, the proof of Corollary 1.5 is completed.

Proof of Corollary 1.6.
Assume that ` ≥ 4 and the arithmetical functions F : N→ C satisfy the relation

F (x21 + · · ·+ x2`) = F (x21) + · · ·+ F (x2`)

for every x1, . . . , x` ∈ N. From Corollary 1.4, we have

F (m2) = Cm2 +D and F (x21 + · · ·+ x2`) = C(x21 + · · ·+ x2`) + `D.

Since there are numbers m,x1, . . . , x` ∈ N such that m2 = x21 + · · ·+ x2` , thus

Cm2 + `D = Cm2 +D,

consequently D = 0. Therefore, the proof of Corollary 1.6 is finished.

5 Some remarks

Remark 1. Recently in [4], we consider a similar problem for arithmetical functions commutable
with sums of three squares. We gave all functions f, h : N→ C which satisfy the relation

f(a2 + b2 + c2 + k) = h(a) + h(b) + h(c) +K

for every a, b, c ∈ N, where k ≥ 0 is an integer and K is a complex number. If n cannot be
written as a2 + b2 + c2 + k for suitable a, b, c ∈ N, then f(n) is not determined. This is more
complicated if we assume that f and h are multiplicative functions.

Let
M = {a2 + b2 + c2 | a, b, c ∈ N}

and for each k ∈ N0 let

Hk =


{1, . . . , e+ 2} if k = 2ek1, (k1, 2) = 1, 2 | e and k1 ≡ 1 (mod 8),

N \ {e+ 2} if k = 2ek1, (k1, 2) = 1, 2 | e and k1 ≡ 5 (mod 8),

N in any other cases.
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Among the other results, we prove the following theorem.

Theorem A. (Kátai I. and B. M. Phong [4]) Let k ∈ N0 and K ∈ C. Assume that multiplicative
functions F,H satisfy the relation

F (a2 + b2 + c2 + k) = H(a) +H(b) +H(c) +K

for every a, b, c ∈ N.
Then one of the following assertions holds:

1) H(m) = 1 and F (η + k) = 0 (∀m ∈ N, ∀η ∈M) if K = −3
2) H(m) = 1 and F (2n+ 1) = 1, F (2α) = K + 3 (∀m,n ∈ N, ∀α ∈ Hk) if K 6= −3
3) H(m) = χ2(m) and F (2n+ 1) = 1 (∀m,n ∈ N) if (k,K) 6= (3,−1)

4) H(m) = χ2(m) and F (2n+ 1) = (−1)n, F (2) = (−1)
k+1
4 2, F (2α) = 0

(∀m,n ∈ N, ∀α ∈ Hk, α ≥ 2) if (k,K) = (3,−1)
5) H(m) = m2, F (2n+ 1) = 2n+ 1 and F (2α) = 2α (∀m,n ∈ N, ∀α ∈ Hk) ,

where χ2(m) is the Dirichlet character (mod 2).

Remark 2. Let

R = {r ∈ N | r2 = a2+b2 = u2+v2+w2 = x2+y2+z2+t2 for some a, b, u, v, w, x, y, z, t ∈ N.}

It is clear to check that

{13, 17, 25, 26, 29, 34, 37, 41, 45, . . .} ⊂ R,

for examples

132 = 122 + 52 = 122 + 42 + 32 = 82 + 82 + 52 + 42,

452 = 362 + 272 = 292 + 282 + 202 = 262 + 242 + 222 + 172.

By using Lemma 2.1, we can show that for all n ∈ N and r ∈ R there are x1, x2, x3, x4 ∈ N such
that

r2n = x21 + x22 + x23 + x24.

From Theorem 1.2 we obtain the following theorem.

Theorem B. Let k ∈ N0 and K ∈ C. Assume that the arithmetical functions F,H1, H2, H3, H4 :

N→ C satisfy the relation

F (x21 + x22 + x23 + x24 + k) = H1(x1) +H2(x2) +H3(x3) +H4(x4) +K

for every x1, x2, x3, x4 ∈ N. Then there are numbers C,D1, D2, D3, D4 ∈ C such that

Hi(m) = Am2 +Di (i = 1, . . . , 4)

and
F (r2n+ k) = Cr2n+D1 +D2 +D3 +D4 +K

hold for every m,n ∈ N.
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