H. Saydi and M. R. Darafsheh
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 104–112
DOI: 10.7546/nntdm.2021.27.3.104-112
Full paper (PDF, 227 Kb)
Details
Authors and affiliations
H. Saydi ![]()
College of Mathematical Science, Tarbiat Modares University
Tehran, Iran
M. R. Darafsheh ![]()
School of Mathematics, Statistics and Computer Science
College of Science, University of Tehran, Tehran, Iran
Abstract
Heilbronn sums is of the form
, where
is an odd prime, and
. This is a supercharacter and has application in number theory. We extend this sum by defining
, where
is an odd prime and prove that
is a supercharacter and drive a few identities involving
.
Keywords
- Supercharacter
- Heilbronn sum
- Supercharacter table
2020 Mathematics Subject Classification
- 20C15
- 11T23
References
- André, C. A. M. (1995). Basic characters of the unitriangle group. Journal of Algebra, 175(1), 287–319.
- André, C. A. M. (2001). The basic character table of the unitriangular group. Journal of Algebra, 241(1), 437–471.
- André, C. A. M. (2002). Basic characters of the unitriangle group (for arbitrary prime). Proceedings of the American Mathematical Society, 130(7), 1943–1954.
- Brumbaugh, J. L., Bulkow, M., Fleming, P. S., German, L. A. G., Garcia, S. R., Karaali, G., Michal, M., Turner. A. P., & Suh, H. (2014). Supercharacters, exponential sums, and the uncertainty principle. Journal of Number Theory, 144, 151–175.
- Diaconis, P., & Isaacs, I. M. (2008). Supercharacters and superclasses for algebra groups. Transactions of the American Mathematical Society, 360(5), 2359–2392.
- Dornhoff, L. (1971). Group Representation Theory. Part A: Ordinary Representation Theory, Marcel Dekker, Inc., New York.
- Garcia, S. R., & Lutz, B. (2018). A supercharacter approach to Heilbronn sums. Journal of Number Theory, 186, 1–15.
Related papers
Cite this paper
Saydi, H., & Darafsheh, M. R. (2021). Heilbronn-like sums and their properties. Notes on Number Theory and Discrete Mathematics, 27(3), 104-112, DOI: 10.7546/nntdm.2021.27.3.104-112.
