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Abstract: Heilbronn sums is of the form Hp(a) =
p−1∑
l=1

e(
alp

p2
), where p is an odd prime, and

e(x) = exp(2πix). This is a supercharacter and has application in number theory. We extend

this sum by defining Dp(a) =
p−1∑
l=1

e(
alp

p3
), where p is an odd prime and prove that Dp(a) is a

supercharacter and drive a few identities involving Dp(a).
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1 Introduction

The theory of supercharacters for finite groups and algebra groups was introduced in [5]. It
generalizes the basic characters studied by Andre [1–3]. The classical character theory is a special
case of this theory.

For a finite group G, let

Irr(G) = {χ1 = 1G, χ2, . . . , χh}

be the set of irreducible complex characters of G with 1G the trivial character. Let

Con(G) = {K1 = {1}, K2, . . . , Kh}

be the set of conjugacy classes of G with K1 the identity conjugacy class.
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Definition 1.1. Let G be a finite group. The pair (X ,K) is called a supercharacter theory for G
if

1. X is a partition of Irr(G) and K is a partition of G,

2. {1} ∈ K,

3. |X | = |K|,

4. For each X ∈ X , the character σX =
∑
χ∈X

χ(1)χ is constant on each Y ∈ K.

The characters σX are called supercharacters and the elements of K are called superclasses.
There are two trivial supercharacter theory for a non-trivial finite group G as follows:

(a) X =
⋃

χ∈Irr(G)

{χ}, K =
⋃

K∈Con(G)

K.

(b) X = {1G} ∪ {Irr(G)− {1G}}, K = {1} ∪ {G− {1}}.

In case (a) the irreducible characters of G are supercharacters and in case (b) the supercharacters
are 1G and ρG − 1G, where ρG is the regular character of G.

An important construction of supercharacter theory which is mentioned in [5] is as follows:
Let G be a finite group and A be a subgroup of Aut(G). Let

Irr(G) = {χ1 = 1G, χ2, . . . , χh},
Con(G) = {C1 = {1}, C2, . . . , Ch}.

Suppose that for each α ∈ A, Cαi = Cj , 1 ≤ i, j ≤ h and χαi (g) = χi(g
α) for all g ∈ G, α ∈ A,

then the number of conjugacy classes fixed by α equals the number of irreducible characters fixed
by α, and moreover the number of orbits of A on Con(G) equals the number of orbits of A on
Irr(G) [6]. It is easy to see that the orbits of A on Irr(G) and Con(G) yield a supercharacter
theory for G. This supercharacter theory is called automorphic.

Supercharacter theory on certain Abelian groups yields interesting results. In [4]supercharacter
theories on the group Zdn induced by the action of certain subgroups of GLn(d) are considered. It
is shown that a variety of exponential sums which are of interest in number theory such as Gauss,
Ramanujan, Heilbronn, and Kloosterman sums appear as supercharacters.

One particular example is the Heilbronn sum which is studied in [4] and [7]. This sum is of
the form

Hp(a) =
p−1∑
l=1

e(
alp

p2
),

where p is an odd prime and e(x) = e2πix. It arises as a supercharacter when considering
the action of a certain subgroup A ≤ Z×p2 , where Z×p2 is the multiplicative group of invertible
elements of Zp2 which is isomorphic to the cyclic group Zp(p−1), on the group Zp2 by left (right)
multiplication. Then Heilbronn sums appear as part of the supercharacter table of Zp2 . Using the
corresponding supercharacter table, a few identities involving Heilbronn sums are derived. Also
a formula for the number of solutions to the equation

axp + byp ≡ czp (mod p2)

involving Heilbronn sums is obtained.
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Motivated by [7], we extended the Heilbronn sums to

Dp(a) =
p−1∑
l=1

e(
alp

p3
),

where p is an odd prime. We will prove that Dp(a) is a supercharacter and obtain a few identities
similar to those in [7].

2 Preliminaries

Suppose G is a finite group and (X ,K) is a supercharacter theory for G. Suppose that
X = {X1, . . . , XN} and K = {K1, . . . , KN} where X1 = {1G} and K1 = {1}. Let

σi =
∑
χ∈Xi

χ(1)χ

be the corresponding supercharacter. The supercharacter table for G corresponding to (X ,K) is
the N ×N table in Table 1.

K1 K2 · · · KN

σ1 σ1(K1) σ1(K2) · · · σ1(KN)

σ2 σ2(K1) σ2(K2) · · · σ2(KN)
...

...
... . . . ...

σN σN(K1) σN(K2) · · · σN(KN)

Table 1

Let us set S =
(
σi(Kj)

)N
i,j=1

and let us call it the supercharacter table of the group G.

Recall that a class function on G is a function f : G −→ C which is constant on conjugacy
classes of G. The set of all the class functions on G is denoted by cf(G,C) and has the structure
of a vector space over C with an orthonormal basis Irr(G) with respect to the inner product:

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x).

Since supercharacters are constant on superclasses it is natural to call them superclass
functions. We have

〈σi, σj〉 =
1

|G|
N∑
k=1

|Kk|σi(Kk)σj(Kk)

and by using the row orthogonality relations on Irr(G) we obtain 〈σi, σj〉 = δij
∑
χ∈Xi

χ(1)2.

If we set the matrix U =
1√
|G|

[
σi(Kj)

√
|Kj|√

|Xi|

]N
i,j=1

, then by [4] this matrix is unitary,

U = U t and U4 = I .
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3 A supercharacter theory for Heilbronn-like sums

Let A be a subgroup of GLd(Zn) which is closed under transpose. Then obviously A acts on
Zdn as well as on Irr(Zdn). Let X1, X2, . . . , XN be the orbits of A acting on G = Zdn. By a
formulation given in [4], the functions

σi(y) =
∑
x∈Xi

e
(x · y

x

)
, y ∈ Xj

are called supercharacters of G and the sets Xi are called superclasses. Here x · y denotes the
inner product of the vectors x and y as elements of Zdn, and e(x) = e2πix.

In [4] it is shown that certain exponential sums which are used in number theory are
supercharacters on Abelian groups.
Gauss sums: G = Zp, p is an odd prime, g is a primitive root modulo p, Γ = 〈gp〉. Then Γ acts
on G by multiplication. The resulting supercharacters are Gauss sums:

Kloosterman sums: G = Z2
p, p is an odd prime, Γ =

{[
u 0

0 u−1

]
| u ∈ Z×p

}
. Then Γ acts on G

in the natural way, and the corresponding supercharacters are Kloosterman sums.
Heilbronn sums: G = Zp2 , p is an odd prime, Γ = {1p, 2p, . . . , (p − 1)p} is a subgroup of Z×p2 .
The group Γ has order p− 1 and acts on G by multiplication. The corresponding supercharacters

are Heilbronn sums Hp(a) =
p−1∑
l=1

e(
alp

p2
).

Ramanujan sums: G = Zn, Γ = Z×n , Γ acts on G by multiplication and the corresponding
supercharacters are the well-known Ramanujan sums.

Here we are interested to generalize the Heilbronn sums to: Dp(a) =
p−1∑
l=1

e

(
alp

p3

)
, where p is

an odd prime.

Lemma 3.1. Let p be an odd prime and x, y ∈ Z which are not multiples of p. Then
xp ≡ yp (mod p3) if and only if x ≡ y (mod p2).

Proof. If x ≡ y (mod p2), then x = y + rp2, for some r ∈ Z. We can write

xp = (y + rp2)p =
p∑

k=0

(
p

k

)
yp−k(rp2)k ≡ yp (mod p3).

Therefore, xp ≡ yp (mod p3).
Conversely suppose xp ≡ yp (mod p3). Let g be a primitive root modulo p3, i.e., a generator

of Z×p3 ∼= Zp2(p−1). Then x = gj and y = gk (mod p3), for some i, j. Then from
xp ≡ yp (mod p3) we obtain gjp ≡ gkp (mod p3), hence g(j−g)p ≡ 1 (mod p3). Therefore,
p2(p − 1) | (j − k)p which implies p(p − 1) | j − k. If we write j − k = mp(p − 1), for
some m ∈ Z, then j = k + mp(p − 1). Hence x = gj = gk+mp(p−1) = gk(gp(p−1))m. But
by Euler’s theorem in number theory gϕ(p2) = gp(p−1) ≡ 1 (mod p2). Therefore, x = gj ≡
gk (mod p2) ≡ y (mod p2). Hence x ≡ y (mod p2) and the Lemma is proved.

By the above Lemma we deduce that

A = {1p, 2p, . . . , (p− 1)p}
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is a proper subgroup of Z×p3 of order p − 1. Let g be a primitive root modulo p3, i.e.,
O(g) = p2(p − 1), hence O(gp

2
) = (p − 1). Since Z×p3 is a cyclic group of order p2(p − 1),

it has a unique subgroup of order p− 1, hence A = 〈gp2〉, gp2 ∈ A.
Next we consider the action of A on Zp3 by left multiplication. We will find the orbits of this

action as follows:

X1 = gA of size p− 1

X2 = g2A of size p− 1

...

Xp2 = gp
2

A = A of size p− 1

Xp2+1 = {p(p+ 1), 2p(p+ 1), . . . , (p− 1)p(p+ 1)} of size p− 1

Xp2+2 = {p(2p+ 1), 2p(2p+ 1), . . . , (p− 1)p(2p+ 1)} of size p− 1

...

Xp2+p = {p(p2 + 1), 2p(p2 + 1), . . . , (p− 1)p(p2 + 1)} of size p− 1

Xp2+p+1 = {p2, 2p2, . . . , (p− 1)p2} of size p− 1

Xp2+p+2 = {0}.

Therefore, there are p2 + p+ 2 orbits, one of them has size 1 and the rest have size p− 1 each.
Now we calculate the supercharacter table of Zp2 with respect to the above action. Using the

formula written at the begining of Section 3, we have:

For 1 ≤ i, j ≤ p2, σi(Xj) =
∑
x∈Xi

e

(
gilpgj

p3

)
=
∑
x∈Xi

e

(
gi+jlp

p3

)
= Dp (gi+j)

Therefore Dp(a) is a supercharacter.
For 1 ≤ i ≤ p2, p2 + 1 ≤ j ≤ p2 + p,

σi(Xj) =
p−1∑
l=1

e

(
gilpp(kp+ 1)

p3

)
=

p−1∑
l=1

e

(
gilp(kp+ 1)

p2

)
= Hp(g

i(kp+ 1))

where k = 1, 2, . . . , p.

For 1 ≤ i ≤ p2, j = p2 + p+ 1, σi(Xj) =
p−1∑
l=1

e

(
gilpp2

p3

)
=

p−1∑
l=1

e

(
gilp

p

)
= −1.

For 1 ≤ i ≤ p2, j = p2 + p+ 2, we have σi(Xj) = p− 1.

For p2+1 ≤ i ≤ p2+p, 1 ≤ j ≤ p2, σi(Xj) =
p−1∑
l=1

e

(
lp(kp+ 1)gj

p3

)
=

p−1∑
l=1

e

(
l(kp+ 1)gj

p2

)
.

Here we define

Lp(a) =
p−1∑
l=1

e

(
la

p2

)
.

Then all values of l are prime to p, hence lp = l modulo p.
By [7, Theorem 3.1], {1p, 2p, . . . , (p − 1)p} = {1, 2, . . . , l} are different mod p2. Therefore

we can write

Lp(a) =
p−1∑
l=1

e

(
la
p2

)
=

p−1∑
l=1

e

(
la
p

p2

)
,

which is equal to Hp(a).
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Thus σi(Xj) = Hp((kp+ 1)gj) where k = 1, 2, . . . , p.
For p2 + 1 ≤ i ≤ p2 + p, p2 + 1 ≤ j ≤ p2 + p,

σi(Xj) =

p−1∑
l=1

e

(
lp(kp+ 1)l′p(k′p+ 1)

p3

)
=

p−1∑
l=1

e

(
l(kp+ 1)l′(k′p+ 1)

p

)
= −1

for k = 1, 2, . . . , p.
For p2 + 1 ≤ i ≤ p2 + p, j = p2 + p+ 1,

σi(Xj) =

p−1∑
l=1

e

(
lp(kp+ 1)p2

p3

)
=

p−1∑
l=1

e(l(kp+ 1)) = p− 1

for k = 1, 2, . . . , p. The following identities are clear:

σi(Xj) = p− 1, p2 + 1 ≤ i ≤ p2 + p, j = p2 + p+ 2

σp2+p+1(Xj) = −1, 1 ≤ j ≤ p2

σp2+p+1(Xj) = p− 1, p2 + 1 ≤ j ≤ p2 + p

σp2+p+1(Xp2+p+1) = p− 1, σp2+p+1(Xp2+p+2) = p− 1

σp2+p+2(Xj) = 1, for all j.

Therefore we have the following supercharacter table of Zp3 in Table 2. The matrix U defined in
Section 2 is calculated as Table 3.

As mentioned in [4] the values Kp(a), Lp(a) and Hp(a) are all real numbers. The matrix U is
symmetric and unitary, hence UU−t = U2 = I . Using this, we derive the following identities:

Theorem 3.1. 1.
p2∑
l=1

Dp(g
l) = 0,

2.
p∑

k=1

Hp(g
t(kp+ 1)) = 0, 1 ≤ k ≤ p, t = 1, 2, · · · ,

3.
p2∑
l=1

D2
p(g

l) +
p∑
l=1

H2
p (gl(kp+ 1)) = p(p2 − 1), 1 ≤ k ≤ p,

4.
p2∑
l=1

Dp(g
l)Dp(g

i+l) +
p∑
l=1

Hp(g
l(kp+ 1))Hp(g

i+l(kp+1)) = p,

5.
p∑
l=1

H2
p (gl(kp+ 1)) = p2(p− 1), 1 ≤ k ≤ p.

Proof. Since U is a unitary matrix, its distinct rows and columns are orthogonal to each other.
Orthogonality of any row of U involving Dp’s with the last but one row and the last row of U
yield:

−
p∑
l=1

Dp(g
l) + (p− 1)

p∑
k=1

Hp(g
t(kp+ 1))− (p− 1) + p− 1 = 0,

−
√
p− 1

p∑
l=1

Dp(g
l) +

√
p− 1

p∑
k=1

Hp(g
t(kp+ 1))−

√
p− 1 +

√
p− 1 = 0.

From the above identities we obtain (1) and (2).

109



Ta
bl

e
2

p
−
1

p
−

1
p
−

1

X
1

X
2

··
·

X
2 p

p
−

1
p
−
1

p
−
1

X
p
2
+
1

X
p
2
+
2

··
·

X
p
2
+
p

p
−
1

1

X
p
2
+
p
+
1

X
p
2
+
p
+
2

σ
1

σ
2 . . .

σ
p
2

D
p
(g

2
)

D
p
(g

3
)

··
·

D
p
(g
)

D
p
(g

3
)

D
p
(g

4
)

··
·

D
p
(g

2
)

. . .
. . .

. .
.

. . .
D

p
(g
)

D
p
(g

2
)

··
·

D
p
(1
)

H
p
(g
(p

+
1
))

H
p
(g
(2
p
+
1
))

··
·

H
p
(g
(p

2
+
1
))

H
p
(g

2
(p

+
1
))

H
p
(g

2
(2
p
+
1
))
··
·
H

p
(g

2
(p

2
+
1
))

. . .
. . .

. .
.

. . .
H

p
(p

+
1
)

H
p
(2
p
+
1
)

··
·

H
p
(p

2
+
1
)

−
1

p
−

1

−
1

p
−

1
. . .

. . .
−
1

p
−

1

σ
p
2
+
1

σ
p
2
+
2

. . .
σ
p
2
+
p

H
p
(g
(p

+
1)
)

H
p
(g

2
(p

+
1)
)
··
·

H
p
(p

+
1
)

H
p
(g
(2
p
+
1)
)

H
p
(g

2
(2
p
+
1)
)
··
·
H

p
(2
p
+
1
))

. . .
. . .

. .
.

. . .
H

p
(g
(p

2
+
1)
)

H
p
(g

2
(p

2
+
1)
)
··
·

H
p
(p

2
+
1
)

−
1

−
1

··
·

−
1

−
1

−
1

··
·

−
1

. . .
. . .

. .
.

. . .
−
1

−
1

··
·

−
1

p
−
1

p
−

1

p
−
1

p
−

1
. . .

. . .
p
−
1

p
−

1

σ
p
2
+
p
+
1

σ
p
2
+
p
+
1

−
1

−
1

··
·

−
1

1
1

··
·

1

p
−

1
p
−
1

··
·

p
−
1

1
1

··
·

1

p
−
1

p
−

1

1
1

110



Ta
bl

e
3

U
=

1

p
√
p

                    

D
p
(g

2
)

D
p
(g

3
)

··
·

D
p
(g
)

D
p
(g

3
)

D
p
(g

4
)

··
·

D
p
(g

2
)

. . .
. . .

. .
.

. . .
D

p
(g
)

D
p
(g

2
)

··
·

D
p
(1
)

H
p
(g
(p

+
1
))

H
p
(g
(2
p
+
1
))

··
·

H
p
(g
(p

2
+
1
))

H
p
(g

2
(p

+
1
))

H
p
(g

2
(2
p
+
1
))
··
·
H

p
(g

2
(p

2
+
1
))

. . .
. . .

. .
.

. . .
H

p
(p

+
1
)

H
p
(2
p
+
1
)

··
·

H
p
(p

2
+
1
)

−
1
√
p
−

1

−
1
√
p
−

1
. . .

. . .
−
1
√
p
−

1

H
p
(g
(p

+
1)
)

H
p
(g

2
(p

+
1)
)
··
·

H
p
(p

+
1
)

H
p
(g
(2
p
+
1)
)

H
p
(g

2
(2
p
+
1)
)
··
·
H

p
(2
p
+
1
))

. . .
. . .

. .
.

. . .
H

p
(g
(p

2
+
1)
)

H
p
(g

2
(p

2
+
1)
)
··
·

H
p
(p

2
+
1
)

−
1

−
1

··
·

−
1

−
1

−
1

··
·

−
1

. . .
. . .

. .
.

. . .
−
1

−
1

··
·

−
1

p
−

1
√
p
−

1

p
−

1
√
p
−

1
. . .

. . .
p
−

1
√
p
−

1

−
1

−
1

··
·

−
1

√
p
−

1
√
p
−

1
··
·

√
p
−

1

p
−

1
p
−
1

··
·

p
−
1

√
p
−

1
√
p
−
1

··
·

√
p
−

1

p
−

1
√
p
−

1
√
p
−

1
1

                    

111



Now we consider the square of relevant columns of U :

1

p3

(
p∑
l=1

D2
p(g

l) +
p∑

k=1

H2
p (gl(kp+ 1)) + 1 + p− 1

)
= 1,

1

p3

(
p∑

k=1

H2
p (gl(kp+ 1)) + p+ (p− 1)2 + p− 1

)
= 1.

From the above identities (3) and (5) are obtained. Finally considering the product of any two
distinct rows of U involving Dp(a)’s the identity (4) is obtained.

Theorem 3.2. 1.
l∑

k=1

Hp(g
l(kp+ 1))Hp(g

l(i+ k)p+ 1) = −p2

2.
p2∑
l=1

Dp(g
l)Hp(g

l(tp+ 1)) = −p(p− 1)

Proof. Orthogonality of the rows containing only Hp’s yields:
p∑

k=1

Hp(g
l(kp+ 1))Hp(g

l(i+ k)p+ 1) + p+ (p− 1)2 + p− 1 = 0,

where i 6= 0. We obtain the identity in (1).
Next consider the orthogonality of the rows containing Dp’s and the rows containing Hp’s:

p2∑
l=1

Dp(g
l)Hp(g

l(tp+ 1))−
p∑

k=1

Hp(g
l(kp+ 1)) + (p− 1)2 + p− 1 = 0,

now using the identity in Theorem 3, the identity (2) above is obtained.
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