P. Anantha Reddy, C. Sunitha and V. Siva Rama Prasad
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 3, Pages 68–73
DOI: 10.7546/nntdm.2020.26.3.68-73
Full paper (PDF, 324 Kb)
Details
Authors and affiliations
P. Anantha Reddy
Q.Q. Govt. Polytechnic
Chandulalbaradari, Hyderabad, Telangana-500064, India
C. Sunitha
Department of Mathematics and Statistics, RBVRR Womens College
Narayanaguda, Hyderabad, Telangana-500027, India
V. Siva Rama Prasad
Professor(Retired), Department of Mathematics, Osmania University
Hyderabad, Telangana-500007, India
Abstract
For a positive integer n, let σ(n) and ω(n) respectively denote the sum of the positive divisors of n and the number of distinct prime factors of n. A positive integer n is called a quasimultiperfect (QM) number if σ(n) = kn + 1 for some integer k ≥ 2. In this paper we give some necessary conditions to be satisfied by the prime factors of QM number n with ω(n) = 3 and ω(n) = 4. Also we show that no QM n with ω(n) = 4 can be a fourth power of an integer.
Keywords
- Quasimultiperfect number
- Quasitriperfect number
2010 Mathematics Subject Classification
- 11A25
References
- Abbott, H. L., Aull, C. E., Brown, E., & Suryanarayana, D. (1973). Quasiperfect numbers, Acta Arithmetica, XXII, 439-447; Correction to the paper, Acta Arithmetica, XXIV (1976), 427–428.
- Cattaneo, P. (1951). Sui numeri quasiperfetti, Boll. Un. Mat. Ital., 6 (3), 59–62.
- Li, Meng, & Min, Tang. (2014). On the congruence σ(n) ≡ 1 (mod n)-II, J. Math. Res. Appl., 34 (2), 155–160.
- Min, Tang & Li, Meng. (2012). On the congruence σ(n) ≡ 1 (mod n), J. Math. Res. Appl., 32 (6) 673–676.
- Prasad, V. S. R., & Sunitha, C. (2017). On quasiperfect numbers, Notes on Number Theory and Discrete Mathematics, 23 (3), 73–78.
- Prasad, V. S. R., & Sunitha, C. (2019). On the prime factors of a quasiperfect number, Notes on Number Theory and Discrete Mathematics, 25 (2), 16–21.
- Sándor J., & Crstici, B. (2004). Handbook of Number Theory II, Kluwer Academic Publishers, Dordrecht/ Boston/ London.
Related papers
- Prasad, V. S. R., & Sunitha, C. (2017). On quasiperfect numbers, Notes on Number Theory and Discrete Mathematics, 23(3), 73–78.
- Prasad, V. S. R., & Sunitha, C. (2019). On the prime factors of a quasiperfect number, Notes on Number Theory and Discrete Mathematics, 25(2), 16–21.
Cite this paper
Reddy, P. A., Sunitha, C. & Prasad, V. S. R. (2020). On quasimultiperfect numbers. Notes on Number Theory and Discrete Mathematics, 26(3), 68-73, DOI: 10.7546/nntdm.2020.26.3.68-73.