Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 26, 2020, No. 3, 68–73 DOI: 10.7546/nntdm.2020.26.3.68-73

On quasimultiperfect numbers

P. Anantha Reddy¹, C. Sunitha² and V. Siva Rama Prasad³

¹ Q.Q. Govt. Polytechnic

Chandulalbaradari, Hyderabad, Telangana-500064, India e-mail: ananth_palle@yahoo.co.in

² Department of Mathematics and Statistics, RBVRR Womens College Narayanaguda, Hyderabad, Telangana-500027, India e-mail: csunithareddy1974@gmail.com

³ Professor(Retired), Department of Mathematics, Osmania University Hyderabad, Telangana-500007, India e-mail: vangalasrp@yahoo.co.in

Received: 20 November 2019 Revised: 5 August 2020 Accepted: 5 August 2020

Abstract: For a positive integer n, let $\sigma(n)$ and $\omega(n)$ respectively denote the sum of the positive divisors of n and the number of distinct prime factors of n. A positive integer n is called a *quasimultiperfect* (QM) number if $\sigma(n) = kn + 1$ for some integer $k \ge 2$. In this paper we give some necessary conditions to be satisfied by the prime factors of QM number n with $\omega(n) = 3$ and $\omega(n) = 4$. Also we show that no QM n with $\omega(n) = 4$ can be a fourth power of an integer. Keywords: Quasimultiperfect number, Quasitriperfect number. 2010 Mathematics Subject Classification: 11A25.

1 Introduction

For a positive integer n, let $\sigma(n)$ and $\omega(n)$ respectively denote the sum of the positive divisors of n and the number of distinct prime factors of n. Tang Min and Meng Li [4] called a positive integer n quasimultiperfect (QM) number if $\sigma(n) = kn + 1$ for some integer $k \ge 2$. In particular, a positive integer n is said to be quasiperfect (QP) if $\sigma(n) = 2n + 1$ and quasitriperfect (QT) if $\sigma(n) = 3n + 1$. No QM number is known so far. P. Cattaneo [2] started the study of QP numbers which was continued in [1] and later by several researchers, the details of which can be seen in the book [7, p.38-39] and in recent papers [5] and [6]. If a QM number n exists, then it is shown in [4, Theorem 1] that $\omega(n) \ge 7$ or 3 according as n is odd or even. Also it is proved:

Lemma 1.1 ([4, Theorem 2]). If n is an even QM with $\omega(n) = 3$, then n is QT and is of the form $n = 2^{\alpha} \cdot 3^{\beta} \cdot p^2$, where α and β are even integers and p is an odd prime. Also $p = [F(\alpha, \beta)]$ in which $F(\alpha, \beta) = 2^{\alpha+1} \cdot 3^{\beta+1}/(2^{\alpha+1} + 3^{\beta+1} - 1)$ (Here [x], as usual, denotes the greatest integer not exceeding the real number x).

Lemma 1.2 ([3, Theorem 1.1]). If n is QM with $\omega(n) = 4$, then n is QT and is of the form $n = 2^{\alpha} . 3^{\beta} . p^{\gamma} . q^{\delta}$, where α , β , γ and δ are even integers and p < q are odd primes.

The purpose of this paper is to give some necessary conditions on the prime p in Lemma 1.1 and on the primes p and q in Lemma 1.2. Also we establish that no QM number with $\omega(n) = 4$ can be a fourth power of an integer In fact, we prove the following:

Theorem A. The odd prime p in Lemma 1.1 is such that

(i) $p \equiv 29 \pmod{36}$ if $\alpha \equiv 0 \pmod{6}$ (ii) $p \equiv 17 \pmod{36}$ if $\alpha \equiv 2 \pmod{6}$ and (iii) $p \equiv 5 \pmod{36}$ if $\alpha \equiv 4 \pmod{6}$.

Theorem B. Suppose *n* is QM with $\omega(n) = 4$ and is of the form given in Lemma 1.2. Suppose $p \equiv a \pmod{8}$ and $q \equiv b \pmod{8}$. Then

 $\begin{aligned} &(i) \ (a,b) \not\in \{(3,3), (3,7), (7,3), (7,7)\} \\ &(ii) \ (a,b) \in \{(1,3), (5,3), (1,7), (5,7)\} \text{ implies } \gamma \equiv 2 \pmod{4} \\ &(iii) \ (a,b) \in \{(3,1), (3,5), (7,1), (7,5)\} \text{ implies } \delta \equiv 2 \pmod{4} \end{aligned}$

and $(iv) (a, b) \in \{(1, 1), (1, 5), (5, 1), (5, 5)\}$ implies $\gamma \equiv 2 \pmod{4}$ or $\delta \equiv 2 \pmod{4}$.

Remark 1.3. In view of Theorem B, one of p^{γ} and q^{δ} in Lemma 1.2 is not a fourth power and therefore the number n in it cannot be a fourth power. That is, any QM n with $\omega(n) = 4$ is not a fourth power.

2 On QM numbers n with $\omega(n) = 3$

In this section n always denotes a QM number with $\omega(n) = 3$ so that, by Lemma 1.1., $3n + 1 = \sigma(n)$ and is of the form

$$n = 2^{\alpha} . 3^{\beta} . p^2, \tag{2.1}$$

where α and β are even integers and p is an odd prime given by $p = [F(\alpha, \beta)]$. Therefore we have

$$\begin{aligned} 3.2^{\alpha}.3^{\beta}.p^2 + 1 &= \sigma(2^{\alpha}).\sigma(3^{\beta}).\sigma(p^2) \\ &= (2^{\alpha+1} - 1).\left(\frac{3^{\beta+1} - 1}{2}\right).\left(1 + p + p^2\right), \end{aligned}$$

which can be written as

$$2^{\alpha+1} \cdot 3^{\beta+1} \cdot p^2 + 2 = (2^{\alpha+1} - 1) \cdot (3^{\beta+1} - 1) \cdot (1 + p + p^2).$$
(2.2)

First we prove

Lemma 2.1. $\alpha \ge 6$ and $\beta \ge 6$.

Proof. Note that $\alpha, \beta \in \{2, 4, 6, 8, ...\}$ and that F(2, 2) = 6.352, F(2, 4) = 7.776, F(4, 2) = 14.896 and F(4, 4) = 28.3785. Therefore [F(2, 2)] = 6, [F(2, 4)] = 7, [F(4, 2)] = 14and [F(4,4)]=28 showing that for $(\alpha, \beta) \in \{(2, 2), (4, 2), (4, 4)\}$ the values of $[F(\alpha, \beta)]$ are composite so that the corresponding numbers *n* given in (2.1) are not QT. Also if $(\alpha, \beta) = (2, 4)$, then p = 7 so that in this case $n = 2^2.3^4.7^2 = 15876$ for which $\sigma(n) = \sigma(2^2).\sigma(3^4).\sigma(7^2)$ = 7.121.57 = 48279 showing $3n + 1 \neq \sigma(n)$. Therefore it is not QT. Thus for QT of the form (2.1) we have $(\alpha, \beta) \notin \{(2, 2), (2, 4), (4, 2), (4, 4)\}$, proving the lemma. □

Lemma 2.2. The prime p in (2.1) is such that $p \equiv 1 \pmod{4}$.

Proof. For the integers α and β , it is clear that $2^{\alpha+1} - 1 \equiv -1 \pmod{8}$ and $3^{\beta+1} - 1 \equiv 2 \pmod{8}$ so that

$$(2^{\alpha+1}-1).(3^{\beta+1}-1) \equiv -2 \pmod{8}.$$
 (2.3)

Writing the equation (2.2) to congruence modulo 8 and using (2.3) we get

$$2 \equiv -2(1+p+p^2) \pmod{8}.$$

That is, the prime p should satisfy

$$2 + p + p^2 \equiv 0 \pmod{4}.$$
 (2.4)

Now p, being an odd prime, we have $p \equiv 1$ or $3 \pmod{4}$ and in both cases $p^2 \equiv 1 \pmod{4}$. Here (2.4) holds only if $p \equiv 1 \pmod{4}$, proving the lemma.

Lemma 2.3. The prime p in (2.1) is such that $p \equiv 2, 8$ or 5 (mod 9) according to $\alpha \equiv 0, 2$ or 4 (mod 6).

Proof. Write the equation (2.2) to congruence modulo 9 and use the fact that $3^{\beta+1} - 1 \equiv -1 \pmod{9}$ for $\beta \ge 1$ to get

$$2 + G(\alpha, p) \equiv 0 \pmod{9},\tag{2.5}$$

where $G(\alpha, p) = (2^{\alpha+1} - 1)(1 + p + p^2)$.

Now α , being an even integer, $\alpha \equiv 0, 2 \text{ or } 4 \pmod{6}$ so that $\alpha = 6k, 6k + 2 \text{ or } 6k + 4$ for some integer $k \geq 1$ (in view of Lemma 2.1). Hence

$$2^{\alpha+1} - 1 = \begin{cases} 2 (2^6)^k - 1 & \text{if } \alpha \equiv 0 \pmod{6} \\ 2^3 (2^6)^k - 1 & \text{if } \alpha \equiv 2 \pmod{6} \\ 2^5 (2^6)^k - 1 & \text{if } \alpha \equiv 4 \pmod{6}, \end{cases}$$

so that

$$2^{\alpha+1} - 1 \equiv \begin{cases} 1 \pmod{9} & \text{if } \alpha \equiv 0 \pmod{6} \\ 7 \pmod{9} & \text{if } \alpha \equiv 2 \pmod{6} \\ 4 \pmod{9} & \text{if } \alpha \equiv 4 \pmod{6}, \end{cases}$$
(2.6)

since $2^6 \equiv 1 \pmod{9}$.

For an odd prime p we have $p \equiv 1, 2, 4, 5, 7$ or 8 (mod 9) and in these respective cases $p^2 \equiv 1, 4, 7, 7, 4$ or 1 (mod 9). Therefore,

$$1 + p + p^{2} \equiv \begin{cases} 3 \pmod{9} & \text{if } p \equiv 1 \pmod{9} \\ 7 \pmod{9} & \text{if } p \equiv 2 \pmod{9} \\ 3 \pmod{9} & \text{if } p \equiv 4 \pmod{9} \\ 4 \pmod{9} & \text{if } p \equiv 5 \pmod{9} \\ 3 \pmod{9} & \text{if } p \equiv 5 \pmod{9} \\ 3 \pmod{9} & \text{if } p \equiv 7 \pmod{9} \\ 1 \pmod{9} & \text{if } p \equiv 8 \pmod{9}. \end{cases}$$
(2.7)

For different cases of $\alpha \equiv 0, 2$ or 4 (mod 6) and for different cases of $p \equiv 1, 2, 4, 5, 7$ or 8 (mod 9), the values of k such that $G(\alpha, p) \equiv k \pmod{9}$ are given in Table 1 below, using (2.6) and (2.7):

	$p\equiv 1 \;(\mathrm{mod}\;9)$	$p\equiv 2 \;(\mathrm{mod}\;9)$	$p\equiv 4 \;(\mathrm{mod}\;9)$	$p\equiv 5 \;(\mathrm{mod}\;9)$	$p\equiv 7\ ({\rm mod}\ 9)$	$p\equiv 8 \;(\mathrm{mod}\;9)$
$\alpha \equiv 0 \; (\text{mod } 6)$	3	7	3	4	3	1
$\alpha \equiv 2 \; (\mathrm{mod}\; 6)$	3	4	3	1	3	7
$\alpha \equiv 4 \; (\mathrm{mod}\; 6)$	3	1	3	7	3	4

Table 1. The values of k such that $G(\alpha, p) \equiv k \pmod{9}$.

It is clear from the Table 1 that (2.5) holds only in the cases (i) $\alpha \equiv 0 \pmod{6}$, $p \equiv 2 \pmod{9}$ (ii) $\alpha \equiv 2 \pmod{6}$, $p \equiv 8 \pmod{9}$ and (iii) $\alpha \equiv 4 \pmod{6}$, $p \equiv 5 \pmod{9}$, proving the lemma.

Proof of Theorem A. (i) Suppose $\alpha \equiv 0 \pmod{6}$, so that by Lemma 2.3, we have $p \equiv 2 \pmod{9}$. Also by Lemma 2.2, $p \equiv 1 \pmod{4}$. Hence by the Chinese remainder theorem, we have $p \equiv 29 \pmod{36}$.

Parts (ii) and (iii) of Theorem A can be proved similarly, using Lemmas 2.2 and 2.3. \Box

3 On QM numbers n with $\omega(n) = 4$

Throughout this section n stands for a QM number with $\omega(n) = 4$ so that, by Lemma 1.2, $\sigma(n) = 3n + 1$ and n is of the form

$$n = 2^{\alpha} . 3^{\beta} . p^{\gamma} . q^{\delta}, \tag{3.1}$$

where α, β, γ and δ are even integers; and p < q are odd primes. Therefore

$$3.2^{\alpha}.3^{\beta}.p^{\gamma}.q^{\delta} + 1 = \left(2^{\alpha+1} - 1\right)\left(\frac{3^{\beta+1} - 1}{2}\right).\sigma\left(p^{\gamma}\right).\sigma\left(q^{\delta}\right)$$

which can be written as

$$2^{\alpha+1} \cdot 3^{\beta+1} \cdot p^{\gamma} \cdot q^{\delta} + 2 = (2^{\alpha+1} - 1) (3^{\beta+1} - 1) \cdot \sigma (p^{\gamma}) \cdot \sigma (q^{\delta}) .$$
(3.2)

Proof of Theorem B. Writing the equation (3.2) to congruence modulo 8 and using (2.3) we get that p, q, γ and δ of (3.1) must satisfy that $2 \equiv -2.\sigma (p^{\gamma}) \sigma (q^{\delta}) \pmod{8}$ or equivalently

$$\sigma\left(p^{\gamma}\right)\sigma\left(q^{\delta}\right)+1\equiv0\;(\mathrm{mod}\;4).\tag{3.3}$$

Now $p \equiv 1, 3, 5$ or 7 (mod 8) so that $p^2 \equiv 1 \pmod{8}$ in each case. Let $\gamma = 2a$ for some $a \ge 1$. Then

$$\begin{aligned} \sigma\left(p^{\gamma}\right) &= \sigma\left(p^{2a}\right) = 1 + p + p^{2} + \dots + p^{2a} \\ &= (1+p)\left(1 + p^{2} + \dots + p^{2(a-1)}\right) + p^{2a} \\ &\equiv (1+p)a + 1 \pmod{8} \\ &\equiv \begin{cases} 2a + 1 \pmod{8} & \text{if } p \equiv 1 \pmod{8} \\ 4a + 1 \pmod{8} & \text{if } p \equiv 3 \pmod{8} \\ 6a + 1 \pmod{8} & \text{if } p \equiv 5 \pmod{8} \\ 1 \pmod{8} & \text{if } p \equiv 7 \pmod{8} \end{aligned}$$

which shows

$$\sigma (p^{\gamma}) \equiv \begin{cases} \gamma + 1 \pmod{8} & \text{if } p \equiv 1 \pmod{8} \\ 2\gamma + 1 \pmod{8} & \text{if } p \equiv 3 \pmod{8} \\ 3\gamma + 1 \pmod{8} & \text{if } p \equiv 5 \pmod{8} \\ 1 \pmod{8} & \text{if } p \equiv 7 \pmod{8} \end{cases}$$
(3.4)

Similarly

$$\sigma(q^{\delta}) \equiv \begin{cases} \delta + 1 \pmod{8} & \text{if } q \equiv 1 \pmod{8} \\ 2\delta + 1 \pmod{8} & \text{if } q \equiv 3 \pmod{8} \\ 3\delta + 1 \pmod{8} & \text{if } q \equiv 5 \pmod{8} \\ 1 \pmod{8} & \text{if } q \equiv 7 \pmod{8} \end{cases}$$
(3.5)

Table 2 gives the values of k such that $\sigma(p^{\gamma}) \sigma(q^{\delta}) \equiv k \pmod{8}$ for different cases of $p \equiv 1, 3, 5$ or 7 (mod 8) and for different cases of $q \equiv 1, 3, 5$ or 7 (mod 8).

	$p \equiv 1 \; (\mathrm{mod}\; 8)$	$p\equiv 3 \;(\mathrm{mod}\;8)$	$p\equiv 5 \;(\mathrm{mod}\; 8)$	$p\equiv 7\ ({\rm mod}\ 8)$
$q \equiv 1 \; (\text{mod } 8)$	$(\gamma+1)(\delta+1)$	$(2\gamma+1)(\delta+1)$	$(3\gamma+1)(\delta+1)$	$\delta + 1$
$q \equiv 3 \; (\text{mod } 8)$	$(\gamma+1)(2\delta+1)$	$(2\gamma+1)(2\delta+1)$	$(3\gamma+1)(2\delta+1)$	$2\delta + 1$
$q \equiv 5 \; (\mathrm{mod}\; 8)$	$(\gamma+1)(3\delta+1)$	$(2\gamma+1)(3\delta+1)$	$(3\gamma+1)(3\delta+1)$	$3\delta + 1$
$q \equiv 7 \; (\mathrm{mod} \; 8)$	$(\gamma + 1)$	$(2\gamma + 1)$	$(3\gamma + 1)$	1

Table 2. The values of k such that $\sigma(p^{\gamma}) \sigma(q^{\delta}) \equiv k \pmod{8}$.

In view of (3.3), the values of k must satisfy the condition

$$k+1 \equiv 0 \pmod{4}. \tag{3.6}$$

Now Theorem B follows from (3.6) and the Table 2. For instance,

- (i) if (a, b) = (3, 3), then $(2\gamma + 1)(2\delta + 1) + 1 \equiv 0 \pmod{4}$ and this is impossible since γ and δ are even integers, giving $(a, b) \neq (3, 3)$.
- (ii) if (a, b) = (5, 3), then $(3\gamma + 1)(2\delta + 1) + 1 \equiv 0 \pmod{4}$ holds only for $(\gamma + 1) + 1 \equiv 0 \pmod{4}$ giving $\gamma \equiv 2 \pmod{4}$. That is, $(a, b) = (5, 3) \Rightarrow \gamma \equiv 2 \pmod{4}$.
- (iii) if (a,b) = (3,1), then $(2\gamma + 1)(\delta + 1) + 1 \equiv 0 \pmod{4} \Rightarrow \delta + 2 \equiv 0 \pmod{4}$ or $\delta \equiv 2 \pmod{4}$. That is, $(a,b) = (3,1) \Rightarrow \delta \equiv 2 \pmod{4}$.
- (iv) if (a, b) = (1, 5), then $(\gamma + 1)(3\delta + 1) + 1 \equiv 0 \pmod{4} \Rightarrow \gamma + \delta + 2 \equiv 0 \pmod{4}$ showing either $\gamma \equiv 2 \pmod{4}$ or $\delta \equiv 2 \pmod{4}$, but not both. That is, $(a, b) = (1, 5) \Rightarrow \gamma \equiv 2 \pmod{4}$ or $\delta \equiv 2 \pmod{4}$.

The other cases can be proved similarly.

Acknowledgements

The authors are grateful to the referees for their valuable suggestions in improving the quality of the presentation.

References

- Abbott, H. L., Aull, C. E., Brown, E., & Suryanarayana, D. (1973). Quasiperfect numbers, *Acta Arithmetica*, XXII, 439-447; Correction to the paper, *Acta Arithmetica*, XXIV (1976), 427–428.
- [2] Cattaneo, P. (1951). Sui numeri quasiperfetti, Boll. Un. Mat. Ital., 6 (3), 59-62.
- [3] Li, Meng, & Min, Tang. (2014). On the congruence $\sigma(n) \equiv 1 \pmod{n}$ -II, J. Math. Res. Appl., 34 (2), 155–160.
- [4] Min, Tang & Li, Meng. (2012). On the congruence $\sigma(n) \equiv 1 \pmod{n}$, J. Math. Res. Appl., 32 (6) 673–676.
- [5] Prasad, V. S. R., & Sunitha, C. (2017). On quasiperfect numbers, *Notes on Number Theory and Discrete Mathematics*, 23 (3), 73–78.
- [6] Prasad, V. S. R., & Sunitha, C. (2019). On the prime factors of a quasiperfect number, *Notes* on *Number Theory and Discrete Mathematics*, 25 (2), 16–21.
- [7] Sandor J., & Crstici, B. (2004). *Handbook of Number Theory II*, Kluwer Academic Publishers, Dordrecht/ Boston/ London.