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Abstract: For a positive integer n, let o(n) and w(n) respectively denote the sum of the pos-
itive divisors of n and the number of distinct prime factors of n. A positive integer n is called a
quasimultiperfect (QM) number if o(n) = kn + 1 for some integer k£ > 2. In this paper we give
some necessary conditions to be satisfied by the prime factors of QM number n with w(n) = 3
and w(n) = 4. Also we show that no QM n with w(n) = 4 can be a fourth power of an integer.
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1 Introduction

For a positive integer n, let o(n) and w(n) respectively denote the sum of the positive divisors
of n and the number of distinct prime factors of n. Tang Min and Meng Li [4] called a positive
integer n quasimultiperfect (QM) number if o(n) = kn + 1 for some integer k& > 2. In particular,
a positive integer n is said to be quasiperfect (QP) if o(n) = 2n + 1 and quasitriperfect (QT) if
o(n) = 3n+ 1. No QM number is known so far. P. Cattaneo [2] started the study of QP numbers
which was continued in [1] and later by several researchers, the details of which can be seen in
the book [7, p.38-39] and in recent papers [5] and [6].
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If a QM number n exists, then it is shown in [4, Theorem 1] that w(n) > 7 or 3 according as
n is odd or even. Also it is proved:

Lemma 1.1 ([4, Theorem 2]). If n is an even QM with w(n) = 3, then n is QT and is of the form
n = 2%.3%.p, where o and 3 are even integers and p is an odd prime. Also p = [F (o, 3)] in
which F (o, ) = 20+1.3011 /(20F1 4 35+L — 1) (Here [z], as usual, denotes the greatest integer
not exceeding the real number x).

Lemma 1.2 ([3, Theorem 1.1]). If n is QM with w(n) = 4, then n is QT and is of the form
n = 22.3°5.p7.¢% where o, B, v and § are even integers and p < q are odd primes.

The purpose of this paper is to give some necessary conditions on the prime p in Lemma 1.1
and on the primes p and ¢ in Lemma 1.2. Also we establish that no QM number with w(n) = 4
can be a fourth power of an integer In fact, we prove the following:

Theorem A. The odd prime p in Lemma 1.1 is such that
(1) p =29 (mod 36) if & = 0 (mod 6)
(77) p =17 (mod 36) if &« = 2 (mod 6)
and (ii7) p = 5 (mod 36) if & = 4 (mod 6).

Theorem B. Suppose n is QM with w(n) = 4 and is of the form given in Lemma 1.2. Suppose
p = a (mod 8) and ¢ = b (mod 8). Then

() (a,b) € {(3,3),(3,7),(7,3),(7,7)}
(i7) (a,b) € {(1,3),(5,3),(1,7),(5,7)} implies ¥ = 2 (mod 4)
(ii) (a,b) € {(3,1),(3,5),(7,1),(7,5)} implies § = 2 (mod 4)
and (iv) (a,b) € {(1,1),(1,5),(5,1),(5,5)} implies v = 2 (mod 4) or § = 2 (mod 4).

Remark 1.3. In view of Theorem B, one of p” and ¢° in Lemma 1.2 is not a fourth power and
therefore the number 7 in it cannot be a fourth power. That is, any QM n with w(n) = 4 is not a
fourth power.

2 On QM numbers n with w(n) = 3

In this section n always denotes a QM number with w(n) = 3 so that, by Lemma 1.1., 3n + 1 =
o(n) and is of the form

n=2%3"p% 2.1)
where « and [ are even integers and p is an odd prime given by p = [F(«, 8)]. Therefore we
have

3.2°3° p* + 1 = 0(2%).0(3°).0(p?)
1 37 —1 2
== (S ) (e,

which can be written as

2013 p? 42 = (227 —1). (37 — 1) . (1 +p+p?) . (2.2)
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First we prove
Lemma 2.1. o > 6 and 5 > 6.

Proof. Note that a,3 € {2,4,6,8,..} and that F(2,2) = 6.352,F(2,4) = 7.776,
F(4,2) = 14.896 and F'(4,4) = 28.3785. Therefore [F'(2,2)] = 6, [F(2,4)] =7, [F(4,2)] = 14
and [F(4,4)]=28 showing that for (o, 8) € {(2,2),(4,2),(4,4)} the values of [F(«, )] are
composite so that the corresponding numbers 7 given in (2.1) are not QT. Also if («, 5) = (2,4),
then p = 7 so that in this case n = 22.31.7% = 15876 for which o(n) = 0(2?).0(3*).0(7?)
= 7.121.57 = 48279 showing 3n + 1 # o(n). Therefore it is not QT. Thus for QT of the form
(2.1) we have (o, 8) € {(2,2),(2,4),(4,2),(4,4)}, proving the lemma. O

Lemma 2.2. The prime p in (2.1) is such that p = 1 (mod 4).

Proof. For the integers o and 3, it is clear that 227! —1 = —1 (mod 8) and 3°*! — 1 = 2 (mod 8)
so that
(2071 —1). (37" — 1) = —2 (mod ). (2.3)

Writing the equation (2.2) to congruence modulo 8 and using (2.3) we get
2=-2(1+p+p°) (mod8).
That is, the prime p should satisfy
2+ p+p° =0 (mod4). (2.4)

Now p, being an odd prime, we have p = 1 or 3 (mod 4) and in both cases p? = 1 (mod 4).
Here (2.4) holds only if p = 1 (mod 4), proving the lemma. Il
Lemma 2.3. The prime p in (2.1) is such that p = 2,8 or 5 (mod 9) according to « = 0,2 or
4 (mod 6).

Proof. Write the equation (2.2) to congruence modulo 9 and use the fact that 3°*! — 1 =
—1 (mod 9) for 5 > 1 to get
2+ G(a,p) =0 (mod 9), (2.5)

where G(a, p) = (2°7 — 1) (1 + p+ p?).
Now a, being an even integer, « = 0,2 or 4 (mod 6) so that « = 6k, 6k + 2 or 6k + 4 for
some integer £ > 1 (in view of Lemma 2.1). Hence
226" =1 if @ =0 (mod 6)
207 —1=¢023(26F —1 if o =2 (mod 6)
25(26)" =1 if a =4 (mod 6),
so that
1 (mod9) if a =0 (mod6)
20t —1=(¢7(mod9) if a =2 (mod6) (2.6)
4 (mod9) if @ =4 (mod6),

since 2° = 1 (mod 9).
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For an odd prime p we have p = 1,2,4,5,70or8 (mod 9) and in these respective cases
p? =1,4,7,7,40r 1 (mod 9). Therefore,

3(mod9) if p=1(mod9)
7(mod9) if p=2(mod9)
Ltpip?= 3 (mod9) if p=4(mod9) 2.7
4 (mod9) if p=5(mod9)
3 (mod9) if p=7 (mod9)
(1 (mod9) if p =8 (mod?9)

For different cases of @ = 0,2 or4 (mod 6) and for different cases of p = 1,2,4,5,7
or 8 (mod 9), the values of &k such that G(«, p) = k (mod 9) are given in Table 1 below, using
(2.6) and (2.7):

p=1(mod9)|p=2(mod9)|p=4(mod9) | p=5(mod9)|p=7(mod9)|p=8 (mod9)
a =0 (mod 6) 3 7 3 4 3 1
a = 2 (mod 6) 3 4 3 1 3 7
a =4 (mod 6) 3 1 3 7 3 4

Table 1. The values of k such that G(«, p) = k (mod 9).

It is clear from the Table 1 that (2.5) holds only in the cases (i) « = 0 (mod 6) , p = 2 (mod 9)
(ii)) « = 2 (mod 6), p = 8 (mod 9) and (iii) « = 4 (mod 6) , p = 5 (mod 9), proving the

lemma. O

Proof of Theorem A. (i) Suppose o = 0 (mod 6), so that by Lemma 2.3, we have p = 2 (mod 9).
Also by Lemma 2.2, p = 1 (mod 4). Hence by the Chinese remainder theorem, we have
p =29 (mod 36).

Parts (i1) and (iii) of Theorem A can be proved similarly, using Lemmas 2.2 and 2.3. [l

3 On QM numbers n with w(n) = 4

Throughout this section n stands for a QM number with w(n) = 4 so that, by Lemma 1.2,
o(n) = 3n+ 1 and n is of the form

n=2%3%p7.¢°, (3.1
where «, 3, and ¢ are even integers; and p < ¢ are odd primes. Therefore
3/3+1 -1
3203 .0 +1= (2a+1 — 1) (T) o) .o (q5)
which can be written as
20 3 g’ +2= (207 —1) 37 = 1) .o (p7) .o (¢°) . 3.2)
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Proof of Theorem B. Writing the equation (3.2) to congruence modulo 8 and using (2.3) we get
that p, ¢, and 4 of (3.1) must satisfy that 2 = —2.0 (p”) 0 (¢°) (mod 8) or equivalently
o(p)o(¢’) +1=0(mod4). (3.3)
Now p = 1,3,50r 7 (mod 8) so that p?> = 1 (mod 8) in each case. Let v = 2a for some
a > 1. Then
o(p) =0 () =1+p+p° +..+p"
(1+p) (140" + o+ P Y) 4 p
= (1+p)a+1 (mod8)

(20+ 1 (mod 8) if p=1(mod 8)
~ J4a+1(mod8) ifp=3(modS8)
| 6a+1(mod8) ifp=>5(mod8)
(1 (mod3B) if p="7 (mod 8)
which shows )
7+1(mod8) ifp=1(mod38)
2y+ 1 (mod8) ifp=3(mod8
o(p) = ) , ( ) (3.4)
37+ 1(mod8) ifp=75(mod8)
|1 (mod3) if p=7 (mod 8)
Similarly
d+1(mod8) ifg=1(mod38)
o (¢) = 20 +1 (mod8) if g =3 (mod38) 35)
30 +1(mod8) ifg=>5(mod38)
|1 (mod 8) if g =7 (mod 8)

Table 2 gives the values of k such that o (p?) o (¢°) = k (mod 8) for different cases of
p=1,3,50r 7 (mod 8) and for different cases of ¢ = 1,3,5 or 7 (mod 8).

p=1(mod8) | p=3(mod8) | p=5(mod8) |p=7(mod38)

¢g=1(mod8)| (y+1)(0+1) | 2y+1D(0+1)| By+1)(d+1) d+1
¢g=3(mod &) (v+1)(20+1)|(2y+1)(20 +1)| (3y+1)(20 + 1) 20+1
¢g=5(mod8)|(y+1)(30+1)[(2y+1)(30+1)|(3y+1)(30 + 1) 36+1
q = 7 (mod 8) (v+1) (2v+1) (3y+1) 1

Table 2. The values of k such that o (p?) o (¢°) = k (mod 8).

In view of (3.3), the values of £ must satisfy the condition
k+1=0 (mod4). 3.6)

Now Theorem B follows from (3.6) and the Table 2. For instance,
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(i) if (a,b) = (3,3),then (2y+1)(26 + 1) +1 = 0 (mod 4) and this is impossible since  and
J are even integers, giving (a,b) # (3, 3).

(ii) if (a,b) = (5,3), then (3v + 1)(20 + 1) + 1 = 0 (mod 4) holds only for
(v+1)+1=0(mod4) giving v = 2 (mod 4). That is, (a,b) = (5,3) = v =2 (mod 4).

(iii) if (a,b) = (3,1),then 27+ 1)(d+1)+1 =0 (mod4) = d+2 = 0 (mod 4) or 6 =
2 (mod 4). That s, (a,b) = (3,1) = § = 2 (mod 4).

(iv) if (a,b) = (1,5),then (y+1)(30+1)+1 =0 (mod 4) = v+ +2 = 0 (mod 4) showing
either 7 = 2 (mod 4) or 6 = 2 (mod 4), but not both. That is, (a,b) = (1,5) = v =
2 (mod 4) or 6 =2 (mod 4).

The other cases can be proved similarly. ]
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