Krassimir T. Atanassov and József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 1, Pages 31–39
DOI: 10.7546/nntdm.2020.26.1.31-39
Full paper (PDF, 168 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences,
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
József Sándor
Babes-Bolyai University of Cluj, Romania
Abstract
Some new properties of the arithmetic function called “Extension Factor” and
introduced in Part 1 (see [5]) are studied.
Keywords
- Arithmetic function
- Extension factor
2010 Mathematics Subject Classification
- 11A25
References
- Atanassov K. (1987). New integer functions, related to φ and σ functions, Bulletin of Number Theory and Related Topics, XI (1), 3–26.
- Atanassov, K. (1996). Irrational factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 2 (3), 42–44.
- Atanassov K. (2002). Converse factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8 (1), 37– 38.
- Atanassov K. (2002). Restrictive factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8 (4), 117–119.
- Atanassov, K. & Sándor, J. (2019). Extension factor: Definition, properties and problems. Part 1. Notes on Number Theory and Discrete Mathematics, 25 (3), 36–43.
- Ishikawa, I. (1934). Über die Verteileung der Primzahlen, Sci. Rep. Tokyo Univ., 2, 21–44.
- Mitrinovíc, & D., Popadíc, M. (1978). Inequalities in Number Theory. Nís, Univ. of Nís.
- Mitrinovíc, D., Sándor, J. (in coop. with B. Crstici). (1995). Handbook of Number Theory, Kluwer Acad. Publ.
- Panaitopol, L. (1998). On the inequality π(a).π(b) > π(ab). Bull. Math. Soc. Sci. Math. Roumanie, 41 (89), 2, 135–139.
Related papers
Cite this paper
Atanassov, K. T., & Sándor, J. (2020). Extension factor: Definition, properties and problems. Part 2. Notes on Number Theory and Discrete Mathematics, 26(1), 31-39, DOI: 10.7546/nntdm.2020.26.1.31-39.