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1 Introduction

In Part 1 of the present research (see [5]), we introduced the following arithmetic functions

k
EF(n) = [ [
=1

k

that we called Extension Factor, where for the natural number n = [] pi": k, a1, ag, ..., o, > 1
i=1

are natural numbers and py, po, ..., px are different prime numbers.
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It is suitable to suppose that p; < ps < ... < p; and that FF (1) = 1.
In the present paper, we will discuss other properties of function £'F'. In the text, we will use
also the definitions of the following three well-known arithmetic functions (see [8]):

Hp (pi—1), ¢(1)=1 (Euler’s totient function),

H P (pi+ 1), ¥(1)=1 (Dedekind’s function),

p?z‘f'l 1

m =117 =

i=1

, o(l)=1.
We will use also the arithmetic functions (see [1, 8]):

mult(n H pi, mult(1) =1,

- Za Q(1) =1,
i=1

_ i1 o;—1 OGq1 Qg
= E a;ptt..p Pi Piy1 Py

8_615(71) = {p17p27 "'7pk}7
w(n) = k — the cardinaliry of set set(n).

It is immediate that, Q(n) > w(n), with equality only if n is a squarefree number, i.e. n is a
prime or a product of distinct primes.

2 New properties of the arithmetic function £ F

Here, we will discuss some new properties of the arithmetic function E'F'.
Theorem 1. If p is a prime number and s < p is a natural number, then EF(s) < EF(p).

Proof. Let s < p be an arbitrary natural number. Then FF(s) = smult(s) < s? < p? =
EF(p). O

k
Corollary 1. Let n > 1 be squarefree, written as n = [[ p;. Then EF(p(n)) < EF(n).

Proof. We obtain sequentially that

EF(p(n)) = EF(e([ ] p) = EF([ (i~ 1)



Theorem 2. For infinitely many n one has EF (p(n)) < EF(n), and for infinitely many m one
has EF(p(m)) > EF(m).

Proof. When n = 2* for arbitrary natural number &, we obtain for k = 1:

EF(¢(n)) = EF(¢(2)) = FEF(1)=1<4=FEF(2) = EF(n),
and for £ > 2 we obtain:

EF(p(n)) = EF(p(2%) = EF(2FY) = 28 < 281 = EF(2%) = EF(n),

but, when n = 3%, for k = 1:

EF(p(n)) =FEF(p3)) =FEF(2)=4<9=FEF(3) = EF(n),
and for £ > 2 we obtain:

EF(p(n)) = EF(p(3") = EF(2.3F1) = 4.3" > 3! = EF(3%) = EF(n). O
More generally, we can prove the following:
Theorem 3. For any odd prime p, and k > 2, for m = p*, one has EF(¢p(m)) > EF(m).
Proof. First, we see that for £ = 1 from Theorem 1:
EF(p(m)) = EF(p(p)) = EF(p—1) < EF(p) = EF(m),
and for k > 2 we obtain: p(m) = p*~L.(p — 1), s0 EF(p(m)) = p*. EF(p — 1). Now,
EF(p—1)=(p—1)mult(p—1) > 2.(p - 1),

as mult(p — 1) > 2, because p > 3. Now, as 2(p — 1) > p, inequality (1) follows. O
Theorem 4. Let k, s > 1 and p > 3 be an odd prime, satisfying EF(p — 1) < 2p. Let n = 2% .p®.

Then one has

E(p(n)) < EF(n). (1)

Proof. One has ¢(n) = 2¥1.p*~1.(p — 1), so using the inequality EF (u.v) < EF(u).EF(v),
we can write

EF(p(n)) <28 p* EF(p—1) < 281 p*l = EF (2% p*) = EF(n),

by using the assumption EF (p — 1) < 2p.
The cases & = 1 and/or s = 1 are checked as above. So, the inequality (2) holds. U
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We must mention that examples of odd primes p, for which EF (p—1) < 2p are the following:
p = 3,5,17, and generally any Fermat prime p = 2" 4 1.

On the other hand, in the general case, between F'F'(p) and, e.g., EF(p + 1) there is not a
fixed relation, because, for example

EF(8)=8x2=16<49 =17 = EF(7),

while
EF(13) = 13> = 169 < 196 = 14 x 14 = EF(14).

For this case, the following assertion is valid.

Theorem S. If p is a prime number and p + 1 is squarefree, then
EF(p) < EF(p+1).
If p > 3 is a prime number and p + 1 is not squarefree, then
EF(p) > EF(p+1).
Proof. First suppose that for the prime number p, p 4 1 is squarefree. If p = 2, then
EF(2)=4<9=FEF(3)=FEF(2+1).

If p > 3, then
EF(p+1)=(p+1)*>p’ = EF(p),

1.e., the first case is valid.
If p + 1 is not squarefree, then

k
p+1=]]r"
i=1

where £, oy, g, ..., ap > 1 are natural numbers and py, po, ..., pi are different prime numbers and
there is at least one ¢ for which o; > 1. Let oy = 2,p; = 2foras = --- = a = 1. Then

(p+1)°

5 <p’ = EF(p),

EF(p+1) = (p+1)mult(p + 1) =

for p > 3. Obviously, if there is more than one «; > 1, or if the smallest p; > 2, then the
inequality will be more powerful. ]

Corollary 2. For every prime number p > 3 with p + 1 squarefree,
EF(¢(n)) > EF(n),

while, otherwise, we have
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From Theorem 1 it follows that for each prime number p:
EF(p) > EF(p—1),

but there is not a fixed relation between FF'(q) and EF(p — 1), where ¢ is the greatest prime
number smaller than p, because, for example for p = 7,¢q = 5: EF(5) = 25 < 36 = EF(6),
while for p = 17,¢ = 13: EF(16) = 32 < 169 = EF(13).

It can be directly seen that for n = 1, 2,

because EF(1)' =1' =1 =1' = 1570 and EF(2)? = 42 = 16 = 2* = 281 (),
Theorem 6. For the natural number n > 3: EF (n)" < nPF®).

Proof. The proof follows directly from D. Mitrinovi¢’s inequality (n+7)" < n™*" for the natural
numbers r and n > 3 [7]. [l

3 Function £ F and other arithmetic functions

First, for a fixed natural number n with the above canonical representation, we introduce the
arithmetic functions

(see [2]),

(see [3]),

k
RF(n) =[] p& "
=1

(see [4]), and well-known functions , defined by 7(n) being the number of primes smaller or
equal to n, and Mobius function p (see [8]).
Obviously,

W(EF(n)) =0
for each natural number n > 1.
It is seen directly that for each natural number n:

k k

EF(n) 14+8g(a;—1) sg(ai—1)
RF () — Hpi = mult(n). Hpi ,

i=1 =1

(z) 0,ifz <0
SglTr) = .
& 1, ifz >0

where for each real number z:

Now, we prove the following assertions.
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Theorem 7. For every natural number n: IF(EF(n)) < I[F(n).

Proof. Let n be a fixed natural number. Then

IF(EF Hpa”_l Hp" o Hp% = IF(n O

Theorem 8. For every natural number n: CF(EF (n)) > CF(n).

Proof. Let n be a fixed natural number. Then

k
CF(EF =CF( Hpo‘”Ll H a; + 1P > l_I]DO"Jrl CF(n).
i=1

We check directly that

EF()RFWD = 1! =1 = 1! = RF(1)#FD),

EFQ2)R® =4' = 4 > 1" = RF(2)P"®),

EF(4)RF® = 8% — 64 < 256 = 2% = RF(4)FF®. O
More generally, the following assertion holds.

Theorem 9. For every squarefree natural number n > 1 one has: EF (n)fF™ > RF(n)EF™;
and if n is not squarefree, then EF(n)®'(™ < RF(n)FFm),

Proof. In the first case, we get EF (n)™'™ > 1 = RF(n)FF™),
In the second one, we will discuss the simplest case, when n = 2% for k > 2. The case k = 2
was checked above, so, let kK > 3. Then:

RF(n)EF(n) . EF(n)RF(n) _ RF(zk)EF(Qk) . EF<2k>RF(2k) _ (2k—1)

= 2(k_1)2k+1 _ 2(k+1)2k_1 — 24(k—1)2’€—1 . 2(k+1)2k—1 >0,

2k+1 2/@71

- ()

because 4(k — 1) — (k + 1) = 3k — 5 > 0 for each natural number k£ > 1. Obviously, in all other
cases for n the inequality will be more powerful. O]

Theorem 10. For every natural number n not squarefree and with mult(n) > 6, it follows that
RE(n)BF™ > EF(n)".

Proof. Let the natural number 7 not squarefree be given, and let for brevity » = mult(n) > 6.
We check sequentially that

RF(n)PF™ _ EF(n)" = (;)" ~ (nr)" > 0,

if and only if n" — (nr)".r"" = n™" — P Pt = — 0D g Q)
if and only if n"("=1) — (1) > 0,
Since n is not squarefree, it follows that n > 2r. Let us assume that n = 2r. Then

(2r)2r(r—1) . T’2T(T+1) _ 22r(r—1).r2r(r—1) . 7,27*(7“—4—1)
_ 47"(7’—1)'7,27"(7“—1) . T2r(r+1) _ T2r(r—1)'<4'r(r—1) . 7,47“) > O,

that is obvious valid for r > 6. L]
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Theorem 11. For every odd not squarefree number n one has: RF(n)®F™ > EF(n)".

Proof. Let the odd number n be not squarefree. Then, as above, we must prove that
nn(r—l) _ rn(r—l—l) > 0.

Now, clearly n > 3r. Let us assume that n = 3r. Then

(37,,)37‘(7‘—1) . r37"(7"+1) — 337’(7"—1).7“37"(7“—1) o 7431ﬂ(7‘+1)

_ 7,37"(7“—1).(337"(7“—1). — ) >0,
because 33" ("= — 6" > ( for r > 3 that is valid, because n > 3. O
Corollary 3. For every squarefree natural number n
nPF® > BR(n)" > EF(n)®F™ > RF(n)FFM),
If n is not squarefree, and n is even, and mult(n) > 6, or n is an odd number, then

nFFM > RE(n)PF® > EF(n)" > EF(n)RF®™.

Finally, we will discuss the relations between arithmetic functions £ F' and 7. In Table 1 we
give the values for the first 20 natural numbers.

n | m(n) | mult(n) | 7(mult(n)) | EF(n) | 7(EF(n))
1o 1 0 1 0
20 1 2 1 4 2
3 2 3 2 9 4
41 2 2 1 8 4
50 3 5 3 25 9
6 3 6 3 36 11
70 4 7 4 49 15
8| 4 2 1 16

9 4 3 2 27 9
10| 4 10 41 100 25
1| s 11 50 121 31
2] 5 6 3 72 20
13 6 13 6| 169 39
14| 6 13 6| 196 44
15| 6 15 6| 225 48
16| 6 2 1 32 11
17| 7 17 7] 289 61
18 7 6 3] 108 30
19 8 19 8| 361 72
20| 8 10 41 200 46

Table 1. Values of the functions forn =1, ..., 20.
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We are ready to formulate the following theorem.

Theorem 12. For each natural number n > 8:
7(EF(n)) > m(n).m(mult(n)).
Proof. In 1998, in [9], L. Panaitopol proved the inequality
m(x).7(y) > 7(xy)

for any integers x, y > 2, excepting the following pairs: (z,y) = (5,7), (7,5), (7, 7).
Now, put x = n,y = mult(n) in Panaitopol’s inequality, to prove Theorem 12. ]

In fact, from the above, a slightly stronger form can be deduced, namely, it holds true for any
n > 2 distinct from 7.

Theorem 13. For each natural number n > 2: 7(EF(n)) > w(n) + m(mult(n)).

Proof. In 1934 in [6], H. Ishikawa proved the inequality

m(zy) > w(z) + 7(y)

for any integers x,y > 2. Now put x = n,y = mult(n) in Ishikawa’s inequality, to prove
Theorem 13. ]

We can also state two results similar to Theorems 12 and 13, but involving the function RF":

Theorem 14. For each natural number n > 2:

m(RF(n)) < m(n) — m(muli(n)) 2
and (n)
T(RF(n)) < Cmud(n)) (3)

Proof. Apply the Ishikawa inequality 7(zy) > m(z) + 7(y) for z,y > 2 for

) o

I:mult(n)22 and yzm_

Then we get the inequality (3).
We will remark, that (3) holds also for =,y > 1, since 7(1) = 0.
Now, for the proof of (3) apply the Panaitopol inequality 7(zy) > m(z)n(y) for

7(n)
= mult d y=——--2—.
v=mul(n) and y = o L))
Now the pairs
m(n)
It _
(matton. i)
should be distinct from (5,7), (7,5) and (7,7). This is possible only if we do not have mult(n) = 7
and M =7, 1.e., when n = 49. Therefore, (4) follows. ]

m(mult(n))
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4

Conclusion

In conclusion, we will mention, that in future part we will study some extensions of the introduced

new arithmetic function and some other functions.
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