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1 Introduction

In Part 1 of the present research (see [5]), we introduced the following arithmetic functions

EF (n) =
k∏
i=1

pαi+1
i

that we called Extension Factor, where for the natural number n =
k∏
i=1

pαii : k, α1, α2, ..., αk ≥ 1

are natural numbers and p1, p2, ..., pk are different prime numbers.
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It is suitable to suppose that p1 < p2 < ... < pk and that EF (1) = 1.

In the present paper, we will discuss other properties of function EF . In the text, we will use
also the definitions of the following three well-known arithmetic functions (see [8]):

ϕ(n) =
k∏
i=1

pαi−1
i .(pi − 1), ϕ(1) = 1 (Euler’s totient function),

ψ(n) =
k∏
i=1

pαi−1
i .(pi + 1), ψ(1) = 1 (Dedekind’s function),

σ(n) =
k∏
i=1

pαi+1
i − 1

pi − 1
, σ(1) = 1.

We will use also the arithmetic functions (see [1, 8]):

mult(n) =
k∏
i=1

pi, mult(1) = 1,

Ω(n) =
k∑
i=1

αi, Ω(1) = 1,

δ(n) =
k∑
i=1

αip
α1
1 ...p

αi−1

i−1 p
αi−1
i p

αi+1

i+1 ...p
αk
k ,

set(n) = {p1, p2, ..., pk},
ω(n) = k − the cardinaliry of set set(n).

It is immediate that, Ω(n) ≥ ω(n), with equality only if n is a squarefree number, i.e. n is a
prime or a product of distinct primes.

2 New properties of the arithmetic function EF

Here, we will discuss some new properties of the arithmetic function EF .

Theorem 1. If p is a prime number and s < p is a natural number, then EF (s) < EF (p).

Proof. Let s < p be an arbitrary natural number. Then EF (s) = s.mult(s) ≤ s2 < p2 =

EF (p).

Corollary 1. Let n > 1 be squarefree, written as n =
k∏
i=1

pi. Then EF (ϕ(n)) ≤ EF (n).

Proof. We obtain sequentially that

EF (ϕ(n)) = EF (ϕ(
k∏
i=1

pi)) = EF (
k∏
i=1

(pi − 1))

≤
k∏
i=1

EF (pi − 1) ≤
k∏
i=1

EF (pi) = EF (n).
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Theorem 2. For infinitely many n one has EF (ϕ(n)) < EF (n), and for infinitely many m one
has EF (ϕ(m)) > EF (m).

Proof. When n = 2k for arbitrary natural number k, we obtain for k = 1:

EF (ϕ(n)) = EF (ϕ(2)) = EF (1) = 1 < 4 = EF (2) = EF (n),

and for k ≥ 2 we obtain:

EF (ϕ(n)) = EF (ϕ(2k)) = EF (2k−1) = 2k < 2k+1 = EF (2k) = EF (n),

but, when n = 3k, for k = 1:

EF (ϕ(n)) = EF (ϕ(3)) = EF (2) = 4 < 9 = EF (3) = EF (n),

and for k ≥ 2 we obtain:

EF (ϕ(n)) = EF (ϕ(3k)) = EF (2.3k−1) = 4.3k > 3k+1 = EF (3k) = EF (n).

More generally, we can prove the following:

Theorem 3. For any odd prime p, and k ≥ 2, for m = pk, one has EF (ϕ(m)) > EF (m).

Proof. First, we see that for k = 1 from Theorem 1:

EF (ϕ(m)) = EF (ϕ(p)) = EF (p− 1) < EF (p) = EF (m),

and for k ≥ 2 we obtain: ϕ(m) = pk−1.(p− 1), so EF (ϕ(m)) = pk.EF (p− 1). Now,

EF (p− 1) = (p− 1).mult(p− 1) ≥ 2.(p− 1),

as mult(p− 1) ≥ 2, because p ≥ 3. Now, as 2(p− 1) > p, inequality (1) follows.

Theorem 4. Let k, s ≥ 1 and p ≥ 3 be an odd prime, satisfying EF (p− 1) ≤ 2p. Let n = 2k.ps.
Then one has

E(ϕ(n)) < EF (n). (1)

Proof. One has ϕ(n) = 2k−1.ps−1.(p − 1), so using the inequality EF (u.v) ≤ EF (u).EF (v),
we can write

EF (ϕ(n)) ≤ 2k.ps.EF (p− 1) ≤ 2k+1.ps+1 = EF (2k.ps) = EF (n),

by using the assumption EF (p− 1) ≤ 2p.
The cases k = 1 and/or s = 1 are checked as above. So, the inequality (2) holds.
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We must mention that examples of odd primes p, for whichEF (p−1) ≤ 2p are the following:
p = 3, 5, 17, and generally any Fermat prime p = 2r + 1.

On the other hand, in the general case, between EF (p) and, e.g., EF (p + 1) there is not a
fixed relation, because, for example

EF (8) = 8× 2 = 16 < 49 = 72 = EF (7),

while
EF (13) = 132 = 169 < 196 = 14× 14 = EF (14).

For this case, the following assertion is valid.

Theorem 5. If p is a prime number and p+ 1 is squarefree, then

EF (p) < EF (p+ 1).

If p ≥ 3 is a prime number and p+ 1 is not squarefree, then

EF (p) > EF (p+ 1).

Proof. First suppose that for the prime number p, p+ 1 is squarefree. If p = 2, then

EF (2) = 4 < 9 = EF (3) = EF (2 + 1).

If p ≥ 3, then
EF (p+ 1) = (p+ 1)2 > p2 = EF (p),

i.e., the first case is valid.
If p+ 1 is not squarefree, then

p+ 1 =
k∏
i=1

pαii ,

where k, α1, α2, ..., αk ≥ 1 are natural numbers and p1, p2, ..., pk are different prime numbers and
there is at least one i for which αi > 1. Let α1 = 2, p1 = 2 for α2 = · · · = αk = 1. Then

EF (p+ 1) = (p+ 1)mult(p+ 1) =
(p+ 1)2

2
< p2 = EF (p),

for p ≥ 3. Obviously, if there is more than one αi > 1, or if the smallest pi > 2, then the
inequality will be more powerful.

Corollary 2. For every prime number p ≥ 3 with p+ 1 squarefree,

EF (ψ(n)) > EF (n),

while, otherwise, we have
EF (ψ(n)) < EF (n).
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From Theorem 1 it follows that for each prime number p:

EF (p) > EF (p− 1),

but there is not a fixed relation between EF (q) and EF (p − 1), where q is the greatest prime
number smaller than p, because, for example for p = 7, q = 5: EF (5) = 25 < 36 = EF (6),

while for p = 17, q = 13: EF (16) = 32 < 169 = EF (13).

It can be directly seen that for n = 1, 2,

EF (n)n = nEF (n),

because EF (1)1 = 11 = 1 = 11 = 1EF (1) and EF (2)2 = 42 = 16 = 24 = 2EF (2).

Theorem 6. For the natural number n ≥ 3: EF (n)n < nEF (n).

Proof. The proof follows directly from D. Mitrinović’s inequality (n+r)r < nn+r for the natural
numbers r and n ≥ 3 [7].

3 Function EF and other arithmetic functions

First, for a fixed natural number n with the above canonical representation, we introduce the
arithmetic functions

IF (n) =
k∏
i=1

p
1
αi
i

(see [2]),

CF (n) =
k∏
i=1

αpii

(see [3]),

RF (n) =
k∏
i=1

pαi−1
i

(see [4]), and well-known functions π, defined by π(n) being the number of primes smaller or
equal to n, and Möbius function µ (see [8]).

Obviously,
µ(EF (n)) = 0

for each natural number n > 1.
It is seen directly that for each natural number n:

EF (n)

RF (n)
=

k∏
i=1

p
1+sg(αi−1)
i = mult(n).

k∏
i=1

p
sg(αi−1)
i ,

where for each real number x:

sg(x) =

{
0, if x ≤ 0

1, if x > 0
.

Now, we prove the following assertions.
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Theorem 7. For every natural number n: IF (EF (n)) < IF (n).

Proof. Let n be a fixed natural number. Then

IF (EF (n)) = IF (
k∏
i=1

pαi+1
i ) =

k∏
i=1

p
1

αi+1

i <
k∏
i=1

p
1
αi
i = IF (n).

Theorem 8. For every natural number n: CF (EF (n)) > CF (n).

Proof. Let n be a fixed natural number. Then

CF (EF (n)) = CF (
k∏
i=1

pαi+1
i ) =

k∏
i=1

(αi + 1)pi >
k∏
i=1

pαi+1
i = CF (n).

We check directly that

EF (1)RF (1) = 11 = 1 = 11 = RF (1)EF (1),

EF (2)RF (2) = 41 = 4 > 14 = RF (2)EF (2),

EF (4)RF (4) = 82 = 64 < 256 = 28 = RF (4)EF (4).

More generally, the following assertion holds.

Theorem 9. For every squarefree natural number n > 1 one has: EF (n)RF (n) > RF (n)EF (n);

and if n is not squarefree, then EF (n)RF (n) < RF (n)EF (n).

Proof. In the first case, we get EF (n)RF (n) > 1 = RF (n)EF (n).

In the second one, we will discuss the simplest case, when n = 2k for k ≥ 2. The case k = 2

was checked above, so, let k ≥ 3. Then:

RF (n)EF (n) − EF (n)RF (n) = RF (2k)EF (2k) − EF (2k)RF (2k) =
(
2k−1

)2k+1

−
(
2k+1

)2k−1

= 2(k−1)2k+1 − 2(k+1)2k−1

= 24(k−1)2k−1 − 2(k+1)2k−1

> 0,

because 4(k− 1)− (k + 1) = 3k− 5 > 0 for each natural number k ≥ 1. Obviously, in all other
cases for n the inequality will be more powerful.

Theorem 10. For every natural number n not squarefree and with mult(n) > 6, it follows that
RF (n)EF (n) > EF (n)n.

Proof. Let the natural number n not squarefree be given, and let for brevity r = mult(n) > 6.
We check sequentially that

RF (n)EF (n) − EF (n)n =
(n
r

)nr
− (nr)n > 0,

if and only if nnr − (nr)n.rnr = nnr − rn+nr.nn = nnr − rn(r+1).nn > 0,

if and only if nn(r−1) − rn(r+1) > 0.

Since n is not squarefree, it follows that n ≥ 2r. Let us assume that n = 2r. Then

(2r)2r(r−1) − r2r(r+1) = 22r(r−1).r2r(r−1) − r2r(r+1)

= 4r(r−1).r2r(r−1) − r2r(r+1) = r2r(r−1).(4r(r−1) − r4r) > 0,

that is obvious valid for r > 6.
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Theorem 11. For every odd not squarefree number n one has: RF (n)EF (n) > EF (n)n.

Proof. Let the odd number n be not squarefree. Then, as above, we must prove that
nn(r−1) − rn(r+1) > 0.

Now, clearly n ≥ 3r. Let us assume that n = 3r. Then

(3r)3r(r−1) − r3r(r+1) = 33r(r−1).r3r(r−1) − r3r(r+1)

= r3r(r−1).(33r(r−1).− r6r) > 0,

because 33r(r−1).− r6r > 0 for r ≥ 3 that is valid, because n ≥ 3.

Corollary 3. For every squarefree natural number n

nEF (n) > EF (n)n > EF (n)RF (n) > RF (n)EF (n);

If n is not squarefree, and n is even, and mult(n) > 6, or n is an odd number, then

nEF (n) > RF (n)EF (n) > EF (n)n > EF (n)RF (n).

Finally, we will discuss the relations between arithmetic functions EF and π. In Table 1 we
give the values for the first 20 natural numbers.

n π(n) mult(n) π(mult(n)) EF (n) π(EF (n))

1 0 1 0 1 0
2 1 2 1 4 2
3 2 3 2 9 4
4 2 2 1 8 4
5 3 5 3 25 9
6 3 6 3 36 11
7 4 7 4 49 15
8 4 2 1 16 6
9 4 3 2 27 9

10 4 10 4 100 25
11 5 11 5 121 31
12 5 6 3 72 20
13 6 13 6 169 39
14 6 13 6 196 44
15 6 15 6 225 48
16 6 2 1 32 11
17 7 17 7 289 61
18 7 6 3 108 30
19 8 19 8 361 72
20 8 10 4 200 46

Table 1. Values of the functions for n = 1, . . . , 20.
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We are ready to formulate the following theorem.

Theorem 12. For each natural number n ≥ 8:

π(EF (n)) ≥ π(n).π(mult(n)).

Proof. In 1998, in [9], L. Panaitopol proved the inequality

π(x).π(y) > π(xy)

for any integers x, y ≥ 2, excepting the following pairs: (x, y) = (5, 7), (7, 5), (7, 7).
Now, put x = n, y = mult(n) in Panaitopol’s inequality, to prove Theorem 12.

In fact, from the above, a slightly stronger form can be deduced, namely, it holds true for any
n ≥ 2 distinct from 7.

Theorem 13. For each natural number n ≥ 2: π(EF (n)) ≥ π(n) + π(mult(n)).

Proof. In 1934 in [6], H. Ishikawa proved the inequality

π(xy) ≥ π(x) + π(y)

for any integers x, y ≥ 2. Now put x = n, y = mult(n) in Ishikawa’s inequality, to prove
Theorem 13.

We can also state two results similar to Theorems 12 and 13, but involving the function RF :

Theorem 14. For each natural number n ≥ 2:

π(RF (n)) ≤ π(n)− π(mult(n)) (2)

and

π(RF (n)) ≤ π(n)

π(mult(n))
. (3)

Proof. Apply the Ishikawa inequality π(xy) ≥ π(x) + π(y) for x, y ≥ 2 for

x = mult(n) ≥ 2 and y =
π(n)

π(mult(n))
≥ 1.

Then we get the inequality (3).
We will remark, that (3) holds also for x, y ≥ 1, since π(1) = 0.

Now, for the proof of (3) apply the Panaitopol inequality π(xy) ≥ π(x)π(y) for

x = mult(n) and y =
π(n)

π(mult(n))
.

Now the pairs (
mult(n),

π(n)

π(mult(n))

)
should be distinct from (5,7), (7,5) and (7,7). This is possible only if we do not have mult(n) = 7

and π(n)
π(mult(n))

= 7, i.e., when n = 49. Therefore, (4) follows.
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4 Conclusion

In conclusion, we will mention, that in future part we will study some extensions of the introduced
new arithmetic function and some other functions.
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