Samuel G. Moreno and Esther M. García-Caballero
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 23, 2017, Number 3, Pages 35–37
Full paper (PDF, 133 Kb)
Details
Authors and affiliations
Samuel G. Moreno
Departamento de Matematicas, Universidad de Jaén
23071 Jaen, Spain
Esther M. García-Caballero
Departamento de Matematicas, Universidad de Jaén
23071 Jaen, Spain
Abstract
We give an alternative proof of a formula that generalizes Hermite’s identity. Instead involving modular arithmetic, our short proof relies on the Fourier-type expansion for the floor function and on a trigonometric formula.
Keywords
- Floor function
- Fourier expansion
- Trigonometric identity
AMS Classification
- Primary: 11A99
- Secondary: 42A10, 33B10
References
- Graham, R. L., Knuth, D. E., & Patashnik, O. (1994) Concrete Mathematics: A Foundation for Computer Science. Second edition. Addison-Wesley Publishing Co., Reading, Massachusetts.
- The Wolfram Functions Site, http://functions.wolfram.com/ ElementaryFunctions/Sin/23/01/0003/.
Related papers
Cite this paper
Moreno, S. G., & García-Caballero, E. M. (2017). A short proof of a concrete sum. Notes on Number Theory and Discrete Mathematics, 23(3), 35-37.