A short proof of a concrete sum

Samuel G. Moreno and Esther M. García–Caballero

Departamento de Matemáticas, Universidad de Jaén
23071 Jaén, Spain

e-mails: samuel@ujaen.es, emgarcia@ujaen.es

Received: 2 June 2016 Accepted: 28 April 2017

Abstract: We give an alternative proof of a formula that generalizes Hermite’s identity. Instead involving modular arithmetic, our short proof relies on the Fourier-type expansion for the floor function and on a trigonometric formula.

Keywords: Floor function, Fourier expansion, Trigonometric identity.

AMS Classification: Primary 11A99; Secondary 42A10, 33B10.

A closed form for \(\sum_{k=0}^{m-1} \left\lfloor \frac{x+nk}{m} \right\rfloor \), where \(x \) is a real number and \(m, n \) are integers with \(m > 0 \) can be found in [1], where the authors use modular arithmetic to establish the formula in an elementary (although somewhat long) manner. Our aim is to give a short proof of the above-mentioned result. To this end, define the fractional part of any real \(x \) by \(\{x\} = x - \lfloor x \rfloor \) and notice that it is a periodic piecewise linear function, discontinuous at each integer point, whose Fourier expansion gives us

\[
\lfloor x \rfloor = x - \frac{1}{2} + \frac{1}{\pi} \sum_{j=1}^{\infty} \frac{\sin(2\pi j x)}{j}, \quad x \in \mathbb{R} \setminus \mathbb{Z}.
\] (1)

If \(f(x) \) stands for the right-hand side of (1), then \(f(n) = n - 1/2 \) for each integer \(n \), and thus \(\lfloor n \rfloor = n = f(n) + 1/2 \). From (1) and using that \(\sum_{k=0}^{m-1} k = (m-1)m/2 \), one gets

\[
\sum_{k=0}^{m-1} \left\lfloor \frac{x+nk}{m} \right\rfloor = x + \frac{(m-1)n}{2} - \frac{m}{2} + \frac{1}{\pi} \sum_{j=1}^{\infty} \sum_{k=0}^{m-1} \sin\left(\frac{2\pi j}{m} \frac{x+nk}{m}\right),
\] (2)

provided none of the \((x+nk)/m \) is an integer.

By using \(\sum_{k=0}^{p} \sin(za + ak) = \csc(a/2) \sin(a(p+1)/2) \sin(z + ap/2) \) (see [2]) we establish that

\[
\sum_{k=0}^{m-1} \sin\left(2\pi j \frac{x+nk}{m}\right) = \frac{\sin(\pi j n)}{\sin(\pi j \frac{n}{m})} \sin(\pi j n - \pi j \frac{n}{m} + 2\pi j \frac{x}{m}).
\] (3)
Note that the above sum vanishes except, eventually, when the denominator at the right-hand side also vanishes. Therefore, denoting \(d = \gcd(m, n) \), \(m' = m/d \) and \(n' = n/d \), (3) may differ from zero only when \(jn/m = jn'/m' \in \mathbb{Z} \), namely, when \(j = lm' = lm/d \) (\(l = 1, 2, 3, \ldots \)).

With this in mind, (2) finally transforms to

\[
\sum_{k=0}^{m-1} \left[\frac{x + nk}{m} \right] = x + \frac{(m-1)n}{2} - \frac{m}{2} + \frac{d}{\pi} \sum_{l=1}^{\infty} \sum_{k=0}^{m-1} \frac{\sin \left(2\pi ln'k + 2\pi l \frac{x}{d} \right)}{lm}.
\]

\[
= \frac{(m-1)(n-1)}{2} - \frac{1}{2} + \frac{d}{\pi} \sum_{l=1}^{\infty} \frac{\sin \left(2\pi l \frac{x}{d} \right)}{l}.
\]

A final comment is in order. If \((x + nk_0)/m \in \mathbb{Z} \) for some \(0 \leq k_0 \leq m-1 \), then it is readily verified that:

1. \(x/d \in \mathbb{Z} \). Effectively, if some \(l \in \mathbb{Z} \) exists such that \((x + nk_0)/m = l' \), then \((x + n'dk_0)/(m'd) = l \), which implies that

\[
\frac{x}{d} = m'l - n'k_0 \in \mathbb{Z}.
\]

2. if \(k_1 \neq k_0 \) verifies that \(0 \leq k_1 \leq m-1 \) and also \((x + nk_1)/m = l_1 \in \mathbb{Z} \), then \(|k_2 - k_1| \) is a multiple of \(m' \). To check it, just observe that from \((x + nk_0)/m = l_0 \) and \((x + nk_1)/m = l_1 \) one gets \(n(k_1 - k_0) = m(l_1 - l_0) \) or \(n'(k_1 - k_0) = m'(l_1 - l_0) \); since \(\gcd(m', n') = 1 \), then \(n' \) divides \((l_1 - l_0) \), so finally \((k_1 - k_0) = sm' \) for some integer \(s \).

3. for each integer \(r \) such that \(k_r = k_0 + rm' \in \{0, 1, \ldots, m-1\} \), it also holds \((x + nk_r)/m \in \mathbb{Z} \). To show it, use

\[
\frac{x + nk_0}{m} = l_0, \quad \text{and} \quad \frac{x + n'dk_0}{m'd} = l_0,
\]

to obtain

\[
\frac{x}{d} = m'l_0 - n'k_0 = m'l_0 + m'rn' - n'k_0 - m'rn' \\
= m'(l_0 + rn') - n'(k_0 + rm').
\]

These three items above show that there are exactly \(d \) distinct \(k \)'s in \(\{0, 1, \ldots, m-1\} \) for which \((x + nk_j)/m \in \mathbb{Z} \). Thus, (4) holds true in this case too, because

\[
\sum_{k=0}^{m-1} \left[\frac{x + nk}{m} \right] = \left(x + \frac{(m-1)n}{2} - \frac{m}{2} + \frac{d}{\pi} \sum_{l=1}^{\infty} \sum_{k=0}^{m-1} \frac{\sin \left(2\pi ln'k + 2\pi l \frac{x}{d} \right)}{lm} \right) + \frac{d}{2}.
\]
(we have added \(d/2\) to correct the value of \(f(\cdot)\) in the \(d\) cases in which its argument is an integer). Therefore

\[
\sum_{k=0}^{m-1} \left\lfloor \frac{x + nk}{m} \right\rfloor = \frac{(m-1)(n-1)}{2} - \frac{1}{2} + \frac{d}{2} + d \left(\frac{x}{d} - \frac{1}{2} + \frac{1}{\pi} \sum_{l=1}^{\infty} \sin \left(\frac{2\pi l x}{d} \right) \frac{l}{d} + \frac{1}{2} \right)
\]

\[
= \frac{(m-1)(n-1)}{2} + \frac{d-1}{2} + d \left(f \left(\frac{x}{d} \right) + \frac{1}{2} \right)
\]

\[
= \frac{(m-1)(n-1)}{2} + \frac{d-1}{2} + d \left\lfloor \frac{x}{d} \right\rfloor,
\]

and we are done.

References

37