On an infinite family of unipotent Sylvester–Kac-like matrices

Zhibin Du and Carlos M. da Fonseca
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 4, Pages 846–850
DOI: 10.7546/nntdm.2025.31.4.846-850
Full paper (PDF, 156 Kb)

Details

Authors and affiliations

Zhibin Du
1 School of Artificial Intelligence, South China Normal University
Foshan, Guangdong 528225, China

Carlos M. da Fonseca
2 Kuwait College of Science and Technology
Doha District, Safat 13133, Kuwait

3 Faculty of Applied Mathematics and Informatics, Technical University of Sofia
Kliment Ohridski Blvd. 8, 1000 Sofia, Bulgaria

4 Chair of Computational Mathematics, University of Deusto
48007 Bilbao, Spain

Abstract

Classical Sylvester–Kac matrices are tridiagonal integral matrices with positive off-diagonal entries and fully integral spectra. Here, by relaxing the positivity requirement and using a lower Pascal triangle framework, we define, for each positive integer n, a unipotent Sylvester–Kac-like matrix in which n is the only eigenvalue. This construction highlights the connection to the original Sylvester–Kac matrices while introducing a new family of unipotent matrices with distinctive properties.

Keywords

  • Sylvester–Kac matrix
  • Tridiagonal matrix
  • Unipotent matrix
  • Eigenvalues

2020 Mathematics Subject Classification

  • 15A15
  • 15A18
  • 15B36

References

  1. Anđelić, M., da Fonseca, C. M., Kılıç, E., & Stanić, Z. (2022). A Sylvester–Kac matrix type and the Laplacian controllability of half graphs. Electronic Journal of Linear Algebra, 38, 559–571.
  2. Brawer, R., & Pirovino, M. (1992). The linear algebra of the Pascal matrix. Linear Algebra and Its Applications, 174, 13–23.
  3. Call, G. S., & Velleman, D. J. (1993). Pascal’s matrices. The American Mathematical Monthly, 100, 372–376.
  4. Can, M. B., Howe, R., & Joyce, M. (2013). Unipotent invariant matrices. Linear Algebra and Its Applications, 439, 196–210.
  5. Du, Z., & da Fonseca, C. M. (2024). Sylvester–Kac matrices with quadratic spectra: A comprehensive note. The Ramanujan Journal, 65, 1313–1322.
  6. Du, Z., & da Fonseca, C. M. (2025). A note on the eigenvalues of a Sylvester–Kac matrix with off-diagonal biperiodic perturbations. Journal of Computational and Applied Mathematics, 461, 116429.
  7. Dyachenko, A., da Fonseca, C. M., & Tyaglov, M. (2025). apotent Schwarz matrices and Bessel-like Jacobi polynomials. Submitted.
  8. Edelman, A., & Kostlan, E. (1994). The road from Kac’s matrix to Kac’s random
    polynomials. In: Lewis, J. (Ed.). Proceedings of the Fifth SIAM Conference on Applied Linear Algebra (pp. 503–507). Philadelphia: SIAM.
  9. Ernst, T. (2015). Factorizations for q-Pascal matrices of two variables. Special Matrices, 3, 207–213.
  10. da Fonseca, C. M., Mazilu, D. A., Mazilu, I., & Williams, H. T. (2013). The eigenpairs of a Sylvester–Kac type matrix associated with a simple model for one-dimensional deposition and evaporation. Applied Mathematics Letters, 26, 1206–1211.
  11. Kac, M. (1947). Random walk and the theory of Brownian motion. The American Mathematical Monthly, 54, 369–391.
  12. Kovačec, A. (2021). Schrödinger’s tridiagonal matrix. Special Matrices, 9, 149–165.
  13. Lawden, G. H. (1972). Pascal matrices. The Mathematical Gazette, 56, 325–327.
  14. Mason, A. W. (1998). Unipotent matrices, modulo elementary matrices, in SL2 over a coordinate ring. Journal of Algebra, 203, 134–155.
  15. Mersin, E. Ö., & Bahşi, M. (2025). A new approach to tridiagonal matrices related to the Sylvester–Kac matrix. Notes on Number Theory and Discrete Mathematics, 31(2), 211–227.
  16. Sylvester, J. J. (1854). Théorème sur les déterminants. Nouvelles Annales de
    Mathématiques, 13, 305.
  17. Zassenhaus, H. (1969). Characterization of unipotent matrices. Journal of Number Theory, 1, 222–230.

Manuscript history

  • Received: 2 September 2025
  • Revised: 14 October 2025
  • Accepted: 10 November 2025
  • Online First: 16 November 2025

Copyright information

Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Du, Z., & da Fonseca, C. M. (2025). On an infinite family of unipotent Sylvester–Kac-like matrices. Notes on Number Theory and Discrete Mathematics, 31(4), 846-850, DOI: 10.7546/nntdm.2025.31.4.846-850.

Comments are closed.