Zhibin Du and Carlos M. da Fonseca
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 4, Pages 846–850
DOI: 10.7546/nntdm.2025.31.4.846-850
Full paper (PDF, 156 Kb)
Details
Authors and affiliations
Zhibin Du
![]()
1 School of Artificial Intelligence, South China Normal University
Foshan, Guangdong 528225, China
Carlos M. da Fonseca
![]()
2 Kuwait College of Science and Technology
Doha District, Safat 13133, Kuwait
3 Faculty of Applied Mathematics and Informatics, Technical University of Sofia
Kliment Ohridski Blvd. 8, 1000 Sofia, Bulgaria
4 Chair of Computational Mathematics, University of Deusto
48007 Bilbao, Spain
Abstract
Classical Sylvester–Kac matrices are tridiagonal integral matrices with positive off-diagonal entries and fully integral spectra. Here, by relaxing the positivity requirement and using a lower Pascal triangle framework, we define, for each positive integer
, a unipotent Sylvester–Kac-like matrix in which
is the only eigenvalue. This construction highlights the connection to the original Sylvester–Kac matrices while introducing a new family of unipotent matrices with distinctive properties.
Keywords
- Sylvester–Kac matrix
- Tridiagonal matrix
- Unipotent matrix
- Eigenvalues
2020 Mathematics Subject Classification
- 15A15
- 15A18
- 15B36
References
- Anđelić, M., da Fonseca, C. M., Kılıç, E., & Stanić, Z. (2022). A Sylvester–Kac matrix type and the Laplacian controllability of half graphs. Electronic Journal of Linear Algebra, 38, 559–571.
- Brawer, R., & Pirovino, M. (1992). The linear algebra of the Pascal matrix. Linear Algebra and Its Applications, 174, 13–23.
- Call, G. S., & Velleman, D. J. (1993). Pascal’s matrices. The American Mathematical Monthly, 100, 372–376.
- Can, M. B., Howe, R., & Joyce, M. (2013). Unipotent invariant matrices. Linear Algebra and Its Applications, 439, 196–210.
- Du, Z., & da Fonseca, C. M. (2024). Sylvester–Kac matrices with quadratic spectra: A comprehensive note. The Ramanujan Journal, 65, 1313–1322.
- Du, Z., & da Fonseca, C. M. (2025). A note on the eigenvalues of a Sylvester–Kac matrix with off-diagonal biperiodic perturbations. Journal of Computational and Applied Mathematics, 461, 116429.
- Dyachenko, A., da Fonseca, C. M., & Tyaglov, M. (2025).
–potent Schwarz matrices and Bessel-like Jacobi polynomials. Submitted. - Edelman, A., & Kostlan, E. (1994). The road from Kac’s matrix to Kac’s random
polynomials. In: Lewis, J. (Ed.). Proceedings of the Fifth SIAM Conference on Applied Linear Algebra (pp. 503–507). Philadelphia: SIAM. - Ernst, T. (2015). Factorizations for q-Pascal matrices of two variables. Special Matrices, 3, 207–213.
- da Fonseca, C. M., Mazilu, D. A., Mazilu, I., & Williams, H. T. (2013). The eigenpairs of a Sylvester–Kac type matrix associated with a simple model for one-dimensional deposition and evaporation. Applied Mathematics Letters, 26, 1206–1211.
- Kac, M. (1947). Random walk and the theory of Brownian motion. The American Mathematical Monthly, 54, 369–391.
- Kovačec, A. (2021). Schrödinger’s tridiagonal matrix. Special Matrices, 9, 149–165.
- Lawden, G. H. (1972). Pascal matrices. The Mathematical Gazette, 56, 325–327.
- Mason, A. W. (1998). Unipotent matrices, modulo elementary matrices, in SL2 over a coordinate ring. Journal of Algebra, 203, 134–155.
- Mersin, E. Ö., & Bahşi, M. (2025). A new approach to tridiagonal matrices related to the Sylvester–Kac matrix. Notes on Number Theory and Discrete Mathematics, 31(2), 211–227.
- Sylvester, J. J. (1854). Théorème sur les déterminants. Nouvelles Annales de
Mathématiques, 13, 305. - Zassenhaus, H. (1969). Characterization of unipotent matrices. Journal of Number Theory, 1, 222–230.
Manuscript history
- Received: 2 September 2025
- Revised: 14 October 2025
- Accepted: 10 November 2025
- Online First: 16 November 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Mersin, E. Ö., & Bahşi, M. (2025). A new approach to tridiagonal matrices related to the Sylvester–Kac matrix. Notes on Number Theory and Discrete Mathematics, 31(2), 211–227.
Cite this paper
Du, Z., & da Fonseca, C. M. (2025). On an infinite family of unipotent Sylvester–Kac-like matrices. Notes on Number Theory and Discrete Mathematics, 31(4), 846-850, DOI: 10.7546/nntdm.2025.31.4.846-850.
