Carlos M. da Fonseca and Paulo Saraiva
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 4, Pages 829–838
DOI: 10.7546/nntdm.2025.31.4.829-838
Full paper (PDF, 200 Kb)
Details
Authors and affiliations
Carlos M. da Fonseca
![]()
1 Kuwait College of Science and Technology
2 Faculty of Applied Mathematics and Informatics, Technical University of Sofia
Kliment Ohridski Blvd. 8, 1000 Sofia, Bulgaria
3 Chair of Computational Mathematics, University of Deusto
48007 Bilbao, Spain
Paulo Saraiva
![]()
4 Faculty of Economics, University of Coimbra
Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal
5 Centre for Mathematics of the University of Coimbra
Department of Mathematics, University of Coimbra, 3000-143 Coimbra, Portugal
6 CeBER – Centre for Business and Economics Research
Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal
Abstract
In a recent paper, K. T. Atanassov and A. G. Shannon introduced a Fibonacci-like sequence derived from the generalized Fibonacci sequence by incorporating alternating signs into the recurrence relation. They also proposed explicit formulas for this sequence. In this work, we present the generating function for the sequence using a matrix-based approach. Furthermore, we explore additional variations of the original definition.
Keywords
- Fibonacci numbers
- Generating function
2020 Mathematics Subject Classification
- 11B39
References
- Adegoke, K. (2020). Weighted Tribonacci sums. Konuralp Journal of Mathematics, 8(2), 355–360.
- Agronomof, N. A. (1914). Notes Mathématiques 16: Sur une suite récurrente. Mathesis, Ser. 4, 4(5), 125—126.
- Anđelic, M., Du, Z., Da Fonseca, C. M., & Kılıç, E. (2020). A matrix approach to some second-order difference equations with sign-alternating coefficients. Journal of Difference Equations and Applications, 26(2), 149–162.
- Atanassov, K. T., & Shannon, A. G. (2025). Two Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 335–339.
- Da Fonseca, C. M. (2011). An identity between the determinant and the permanent of Hessenberg type-matrices. Czechoslovak Mathematical Journal, 61(136) 917–921.
- Da Fonseca, C. M., Kizilateş, C., & Terzioglu, N. (2023). A second-order difference equation with sign-alternating coefficients. Kuwait Journal of Science, 50(2A), 1–8, DOI: 10.48129/kjs.20425.
- Feinberg, M. (1963). Fibonacci–Tribonacci, The Fibonacci Quarterly, 1(3), 71–74.
- Getu, S. (1991). Evaluating determinants via generating functions. Mathematics Magazine, 64(1), 45–53.
- Gryszka, K. (2025). Another six Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(3), 563–569.
- Inselberg, A. (1978). On determinants of Toeplitz–Hessenberg matrices arising in power series. Journal of Mathematical Analysis and Applications, 63(2), 347–353.
- Janjić, M. (2012). Determinants and recurrence sequences. Journal of Integer Sequences, 15, Article ID 12.3.5.
- Jarden, D. (1953). Recurring sequences of order 3. Riveon Lematematika, 6, 41–44.
- Leerawat, U., & Daowsud, K. (2023). Determinants of some Hessenberg matrices with generating functions. Special Matrices, 11, 1–8.
- Martin, A. (1892). Problem 11463. Educational Times and Journal of College Preceptors, New Ser., 45(371), 153. Solution by Rev. T. R. Terry, Prof. Sarkar, et al. (1892). Ibid. 45(373), 232.
- Merca, M. (2013). A note on the determinant of a Toeplitz–Hessenberg matrix. Special Matrices, 1, 10–16.
- Miles, E. P., Jr. (1960). Generalized Fibonacci numbers and associated matrices. The American Mathematical Monthly, 67(8), 745–752.
- Narayana, T. V., & Pettigrew, H. M. (1962). A note on a theorem of Moser and Whitney. Canadian Mathematical Bulletin, 5(2), 191–194.
- Trojovský, P. (2017). On a difference equation of the second order with an exponential coefficient. Journal of Difference Equations and Applications, 23(10), 1737–1746.
- Tuenter, H. J. H. (2023). In search of comrade Agronomof: Some Tribonacci history. The American Mathematical Monthly, 130(8), 708–719.
- Vein, R., & Dale, P. (1999). Determinants and Their Applications in Mathematical Physics. Applied Mathematical Sciences Series, Vol. 134, Springer, New York.
- Verde-Star, L. (2017). Polynomial sequences generated by infinite Hessenberg matrices. Special Matrices, 5, 64–72.
- Waddill, M. E. (1962). Some generalizations and extensions of the Fibonacci sequence. [Doctoral Dissertation]. University of Pittsburgh.
- Waddill, M. E., & Sacks, L. (1967). Another generalized Fibonacci sequence. The Fibonacci Quarterly, 5, 209–222.
Manuscript history
- Received: 15 September 2025
- Revised: 29 October 2025
- Accepted: 6 November 2025
- Online First: 12 November 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Gryszka, K. (2025). Another six Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(3), 563–569.
- Atanassov, K. T., & Shannon, A. G. (2025). Two Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 335–339.
Cite this paper
Da Fonseca, C. M., & Saraiva, P. (2025). Alternating generalized Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 31(4), 829-838, DOI: 10.7546/nntdm.2025.31.4.829-838.
