Tippawan Puttasontiphot and Teerapat Srichan
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 1, Pages 27–31
DOI: 10.7546/nntdm.2021.27.1.27-31
Full paper (PDF, 148 Kb)
Details
Authors and affiliations
Tippawan Puttasontiphot ![]()
Department of Mathematics Statistics and Computer Science,
Faculty of Liberal Arts and Science
Kasetsart University Kamphaengsan Campus, Nakhonphratom, Thailand
Teerapat Srichan ![]()
Department of Mathematics, Faculty of Science
Kasetsart University, Bangkok, Thailand
Abstract
In this paper we use an elementary method to give an asymptotical ratio of odd to even cube-full numbers and show that it is asymptotically 1 : 1 + 2−1/3 + 2−2/3.
Keywords
- Cube-full numbers
- Odd/even dichotomy
2010 Mathematics Subject Classification
- 40A25
- 11N69
References
- Erdos, P., & Szekeres, S. (1934–1935). Uber die anzahl der abelschen gruppen gegebenerordnung und uber ein verwandtes zahlentheoretisches problem. Acta Universitatis Szegediensis, 7, 95–102.
- Ivic, A. (1985). The Riemann Zeta-Function, the Theory of the Riemann Zeta-Function with Applications, John Wiley & Sons Inc., New York.
- Jameson, G. J. O. (2010). Even and odd square-free numbers. The Mathematical Gazette,94, 123–127.
- Scott, J. A. (2008). Square-free integers once again. The Mathematical Gazette, 92, 70–71.
- Srichan, T. (2020). The odd/even dichotomy for the set of square-full numbers. Applied Mathematics E-Notes, 20, 528–531.
Related papers
Cite this paper
Puttasontiphot, T. & Srichan, T. (2021). Odd/even cube-full numbers. Notes on Number Theory and Discrete Mathematics, 27(1), 27-31, DOI: 10.7546/nntdm.2021.27.1.27-31.
