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1 Introduction and result

Let k > 1 be a fixed integer. A positive integer n is said to be k-full if each of its prime factors
appears to the power at least k. For k = 2, 3, these numbers are called square-full and cube-full
respectively. Let Nk(x) be the number of k-full integers ≤ x. In 1935, Erdős and Szekeres [1]
proved that for k fixed

Nk(x) = x1/k
∏
p

(
1 +

2k−1∑
m=k+1

p−m/k
)
+O(x1/(k+1)). (1)

For a study of these asymptotic formulae, we refer to [2, Chapter 14.4 ].
In this paper, we study the odd/even dichotomy for the set of cube-full numbers. The motivation

follows from work by Scott [4] and Jameson [3], where it was shown that the ratio of odd to even
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square-free numbers is asymptotically 2 : 1. (A positive integer n is called square-free if it is
not divisible by the square of any prime). Very recently, Srichan [5] used an elementary method

to prove that the ratio of odd to even square-full numbers is asymptotically 1 : 1+

√
2

2
. Then, it

would be interesting to consider the odd/even dichotomy for the set of cube-full numbers.
Let G be the set of all cube-full numbers. Let G(x), Godd(x) and Geven(x) be the set of

all cube-full numbers, odd cube-full numbers and even cube-full numbers in the interval [1, x],
respectively. We denote byN(x),Nodd(x) andNeven(x) the number of members ofG(x),Godd(x)

and Geven(x), respectively. We prove the following theorem.

Theorem 1.1. As x→∞, we have

Nodd(x)

Neven(x)
∼ 2− 22/3. (2)

2 Proof of Theorem 1.1

First, we assume that

Nodd(x) ∼ ax1/3 and Neven(x) ∼ bx1/3, for some a, b ∈ R+. (3)

We wish to show that,
a

b
= 2− 22/3. (4)

For an even cube-full number n, we have 2 | n, then also 8 | n. Thus, there are no cube-full
numbers n such that n ≡ 2, 4, 6 ( mod 8). Then we writeGeven(x) = {n ≤ x, n ∈ G and 8 | n}
and Godd(x) = {n ≤ x, n ∈ G and n ≡ 1, 3, 5, 7 (mod 8)}. Next, we spilt Geven(x) into the set
Geven1(x) and the set Geven2(x), where Geven1(x) = {n ≤ x, n ∈ Geven(x) and n

8
∈ G} and

Geven2(x) = {n ≤ x, n ∈ Geven(x) and n
8
/∈ G }. Let Neven1(x) and Neven2(x) be the number of

members of Geven1(x) and Geven2(x), respectively. It is easy to prove that

Neven1(x) = N(x/8). (5)

Now we will show that

Neven2(x) = Nodd(x/16) +Nodd(x/32). (6)

A positive integer n ∈ Geven2(x) has the form as 2rm, with m being an odd cube-full number
and r = 4, 5. Thus, we write

Geven2(x) = Geven21(x) ∪Geven22(x),

where

Geven21(x) = {n ≤ x, n ∈ Geven2(x) and n = 16m with m being odd cube-full },

and

Geven22(x) = {n ≤ x, n ∈ Geven2(x) and n = 32m with m being odd cube-full }.

Formula (6) follows at once.
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In view of (5) and (6), we have

Neven(x) = N(x/8) +Nodd(x/16) +Nodd(x/32). (7)

Then,

Neven(x) = (Neven(x/8) +Nodd(x/8)) +Nodd(x/16) +Nodd(x/32).

In view of (3), we have

bx1/3 =
b

2
x1/3 +

a

2
x1/3 +

a

24/3
x1/3 +

a

25/3
x1/3.

This proves (4).
Now it remains to prove the existence of a and b.

In view of (7), we write

N(x)−Nodd(x) = N(x/8) +Nodd(x/16) +Nodd(x/32)

N(x)−N(x/8) = Nodd(x) +Nodd(x/16) +Nodd(x/32).

We write f(x) = N(x)−N(x/8), then we have

f(x) = Nodd(x) +Nodd(x/16) +Nodd(x/32). (8)

In view of (1), we have

f(x) ∼ cx1/3, (9)

for a certain c > 0. By the mathematical induction on m ≥ 0 and (8), we have

Nodd(x) =
m∑
j=0

(−1)j
j∑
i=0

(
j

i

)
f
( x

24j+i

)
− (−1)m

m+1∑
i=0

(
m+ 1

i

)
Nodd

( x

24m+4+i

)
.

For m > log2 x
1/4 − 1, we have

Nodd(x) =
∞∑
j=0

(−1)j
j∑
i=0

(
j

i

)
f
( x

24j+i

)
=
∞∑
j=0

2j∑
i=0

(
2j

i

)
f
( x

28j+i

)
−
∞∑
j=0

2j+1∑
i=0

(
2j + 1

i

)
f
( x

28j+i+4

)
.

In view of (9), we know that, for ε > 0, and for some x0,

(c− ε)x1/3 ≤ f(x) ≤ (c+ ε)x1/3, for x > x0.

We note that the inequality f(y) ≤ (c+ε)y1/3 only applies to the terms y = x/24j+i if x/25j ≥ x0.

There exists a positive M such that f(y) ≤ My1/3 for all y ≥ 1. Suppose that k and x are such
that x ≥ 25kx0. For j > k, we have

j∑
i=0

(
j

i

)
f
( x

24j+i

)
≤Mx1/32−4j/3

j∑
i=0

(
j

i

)
2−i/3 =Mαjx1/3,

with α = 16−1/3 + 32−1/3. Now we choose k ≥ logα
ε(1−α)
M
− 1, we have

M
∑
j>k

αj ≤ ε. (10)
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Then, for k ≥ logα
ε(1−α)
M
− 1, and x ≥ 25kx0, we get

Nodd(x) ≥ (c− ε)
∞∑
j=0

2j∑
i=0

(
2j

i

)
x1/3

2(8j+i)/3
− (c+ ε)

k∑
j=0

2j+1∑
i=0

(
2j + 1

i

)
x1/3

2(8j+i+4)/3

−M
∑
j>k

2j+1∑
i=0

(
2j + 1

i

)
x1/3

2(8j+i+4)/3

= (c− ε)x1/3
∞∑
j=0

2−8j/3
2j∑
i=0

(
2j

i

)
2−i/3 − (c+ ε)x1/3

k∑
j=0

2−(8j+4)/3

2j+1∑
i=0

(
2j + 1

i

)
2−i/3

−Mx1/3
∑
j>k

2−(8j+4)/3

2j+1∑
i=0

(
2j + 1

i

)
2−i/3

= (c− ε)x1/3
∞∑
j=0

2−8j/3
(
2−1/3 + 1

)2j
− (c+ ε)x1/3

k∑
j=0

2−(8j+4)/3
(
2−1/3 + 1

)2j+1

−Mx1/3
∑
j>k

2−(8j+4)/3
(
2−1/3 + 1

)2j+1

≥ (c− ε)x1/3
∞∑
j=0

(
2−5/3 + 2−4/3

)2j
− (c+ ε)x1/3

∞∑
j=0

(
2−5/3 + 2−4/3

)2j+1

−Mx1/3
∑
j>k

(
2−5/3 + 2−4/3

)2j+1

≥ (c− ε)x1/3
∞∑
j=0

α2j − (c+ ε)x1/3
∞∑
j=0

α2j+1 −Mx1/3
∑
j>k

αj. (11)

In view of (10), and (11) we have

Nodd(x) ≥ (c− ε)x1/3
∞∑
j=0

α2j − (c+ ε)x1/3
∞∑
j=0

α2j+1 − εx1/3

=
( c

1 + α
− ε

1− α
− ε
)
x1/3. (12)

Similary, we have

Nodd(x) ≤
( c

1 + α
+

ε

1− α
+ ε
)
x1/3. (13)

In view of (12) and (13), we have( c

1 + α
− ε

1− α
− ε
)
x1/3 ≤ Nodd(x) ≤

( c

1 + α
+

ε

1− α
+ ε
)
x1/3. (14)

The existence of a follows from (14) and by the similar proof the existence of b is obtained.
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