On the constant congruence speed of tetration

Marco Ripà
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 3, Pages 245—260
DOI: 10.7546/nntdm.2020.26.3.245-260

Details

Authors and affiliations

Marco Ripà
sPIqr Society, World Intelligence Network
Rome, Italy

Abstract

Integer tetration, the iterated exponentiation ba for a ∈ ℕ − {0, 1}, is characterized by fascinating periodicity properties involving its rightmost figures, in any numeral system. Taking into account a radix-10 number system, in the book “La strana coda della serie n ^ n ^ … ^ n” (2011), the author analyzed how many new stable digits are generated by every unitary increment of the hyperexponent b, and he indicated this value as V(a) or “congruence speed” of a ≢ 0 (mod 10). A few conjectures about V(a) arose. If b is sufficiently large, the congruence speed does not depend on b, taking on a (strictly positive) unique value. We derive the formula that describes V(a) for every a ending in 5. Moreover, we claim that V(a) = 1 for any a (mod 25) ∈ {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23} and V(a) ≥ 2 otherwise. Finally, we show the size of the fundamental period P for any of the remaining values of the congruence speed: if V(a) ≥ 2, then P(V(a)) = 10V(a)+1.

Keywords

• Number theory
• Power tower
• Tetration
• Hyperoperation
• Charmichael function
• Euler’s totient function
• Primitive root
• Exponentiation
• Integer sequence
• Congruence speed
• Modular arithmetic
• Stable digit
• Rightmost digit
• Cycle
• Periodicity

• 11A07
• 11F33

References

1. Andreescu, T., Andrica, D., & Feng Z. (2006). 104 Number Theory Problems: From the Training of the USA IMO Team. Birkhäuser, Boston.
2. Daccache, G. (2015). Climbing the ladder of hyper operators: tetration, Mathemathics Stack Exchange, Available online at: https://math.blogoverflow.com/2015/01/05/climbing-the-ladder-of-hyper-operators-tetration/.
3. Elaqqad (2015). Last Digits of a Tetration, Mathemathics Stack Exchange (Version: 2015-04-01), Available online at: https://math.stackexchange.com/q/1216149.
4. Germain, J. (2009). On the Equation axx (mod b). Integers: Learning, Memory, and Cognition, 9 (6), 629–638.
5. Jolly, N. (2008). Constructing the Primitive Roots of Prime Powers, arxiv.org, Available online at: https://arxiv.org/pdf/0809.2139.pdf.
6. Ripà, M. (2011). La strana coda della serie n ^ n ^ … ^ n. UNI Service, Trento.
7. Sloane, N. J. A. (2018). A317824. The Online Encyclopedia of Integer Sequences, Web. 10 Aug. 2018, Available online at: http://oeis.org/A317824.
8. Sloane, N. J. A. (2018). A317903. The Online Encyclopedia of Integer Sequences. Web. 10 Aug. 2018, Available online at: http://oeis.org/A317903.
9. Sloane, N. J. A. (2018). A317905. The Online Encyclopedia of Integer Sequences. Web. 10 Aug. 2018, Available online at: http://oeis.org/A317905.
10. Urroz, J. J., & Yebra J. L. A. (2009) On the Equation axx (mod bn), Journal of Integer Sequences, 8 (8).
11. User26486, & Brandt, M. Do the last digits of exponential towers really converge to a fixed sequence? Mathematics Stack Exchange (Version: 22 Feb. 2015), Available online at https://math.stackexchange.com/questions/1159995/do-the-last-digits-of-exponential-towers-really-converge-to-a-fixed-sequence.
12. Vladimir, & Doctor Jacques (2005). Modular Exponentiation, The Math Forum, Available online at: http://mathforum.org/library/drmath/view/51625.html.
13. Yan, X.-Y., Wang, W.-X., Chen, G.-R., & Shi, D.-H. (2016). Multiplex congruence network of natural numbers, Scientific Reports, 6, Article No. 23714.

Cite this paper

Ripà, M. (2020). On the constant congruence speed of tetration. Notes on Number Theory and Discrete Mathematics, 26 (3), 245-260, doi: 10.7546/nntdm.2020.26.3.245-260.