Fügen Torunbalcı Aydın
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 2, Pages 167–176
DOI: 10.7546/nntdm.2020.26.2.167-176
Full paper (PDF, 194 Kb)
Details
Authors and affiliations
Fügen Torunbalcı Aydın
![]()
Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
Abstract
In this paper, circular-hyperbolic Fibonacci numbers and quaternions are defined. Also, some algebraic properties of circular-hyperbolic Fibonacci numbers and quaternions which are connected with circular-hyperbolic numbers and Fibonacci numbers are investigated. Furthermore, Honsberger’s identity, the generating function, Binet’s formula, d’Ocagne’s identity, Cassini’s identity, and Catalan’s identity for these quaternions are given.
Keywords
- Fibonacci number
- Hyperbolic number
- Dual-hyperbolic number
- Circular-hyperbolic number
- Circular-hyperbolic Fibonacci number
2010 Mathematics Subject Classification
- 11B37
- 20G20
- 11R52
References
- Bodnar, O. Y. (1994). The Golden Section and Non-Euclidean Geometry in Nature and Art, Publishing House “Svit”, Lvov (In Russian).
- Catoni, F., Boccaletti, R., Cannata, R., Catoni, V., Nichelatti, E., & Zampatti, P. (2008). The Mathematics of Minkowski Space–Time, Birkhauser, Basel.
- Cihan, A., Azak, A. Z., Güngör, M. A., & Tosun, M. (2019). A study of Dual Hyperbolic Fibonacci and Lucas numbers. An. St. Univ. Ovidius Constanta, 27 (1), 35–48.
- Clifford, W. K. (1873). Preliminary sketch of bi-quaternions. Proc. London Math. Soc., 64 (4), 381–395.
- Dattoli, G., Licciardi, S., Pidatella, R. M., & Sabia, E. (2018). Hybrid complex numbers: The matrix version, Adv. Appl. Clifford Algebras, 28 (3), 58.
- Gargoubi, H. & Kossentini, S.(2016). f-algebra structure on hyperbolic numbers. Adv. Appl. Clifford Algebras, 26 (4), 1211–1233.
- Güngör, M. A., & Azak, A. Z. (2017). Investigation of dual complex Fibonacci, dual complex Lucas numbers and their properties, Adv. Appl. Clifford Algebras, 27 (4), 3083–3096.
- Halıcı, S. (2012). On Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 22 (2), 321–327.
- Hamilton, W. R. (1866). Elements of Quaternions. Longmans, Green and Co., London.
- Horadam, A. F. (1963). Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly, 70 (3), 289–291.
- Horadam, A. F. (1993). Quaternion Recurrence Relations, Ulam Quarterly, 2 (2), 23–33.
- Iyer, M. R. (1969). A Note on Fibonacci Quaternions, The Fibonacci Quarterly, 7 (3), 225–229.
- Iyer, M. R. (1969). Some Results on Fibonacci Quaternions, The Fibonacci Quarterly, 7, 201–210.
- Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto.
- Majernik, V. (2006). Quaternion formulation of the Galilean space-time transformation, Acta Phy. Slovaca, 56 (1), 9–14.
- Majernik, V. (1996). Multicomponent number systems, Acta Physica. Polonica A, 90 (3), 491–498.
- Messelmi, F. (2015). Dual complex numbers and their holomorphic functions, working paper or preprint (Jan. 2015).
- Motter, A. E., & Rosa, A. F. (1998). Hyperbolic calculus, Adv. Appl. Clifford Algebras, 8 (1), 109–128.
- Nurkan, K. S., & Güven, A. I. (2015). Dual Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 25 (2), 403–414.
- Nurkan, K. S., & Güven, A. I. (2015). A New Approach to Fibonacci, Lucas numbers and dual vectors, Adv. Appl. Clifford Algebras, 25 (3), 577–590.
- Pennestri, E., & Stefanelli, R. (2007). Linear algebra and numerical algorithms using dual numbers. Multibody Syst, 18 (3), 323–344.
- Stakhov, A. P., & Tkachenko, I. S. (2005). The golden shofar, Chaos Solitons & Fractals, 26 (3), 677–684.
- Stakhov, A. P., & Tkachenko, I. S. (1993). Hyperbolic Fibonacci trigonometry, Reports of the National Academy of Sciences of Ukraine, 208 (7), 9–14.
- Vajda, S. (1989). Fibonacci and Lucas Numbers, and the Golden Section, Ellis Horwood Limited Publ., England.
- Verner, E., & Hoggatt, Jr. (1969). Fibonacci and Lucas Numbers. The Fibonacci
Association. - Ollerton, R. L., & Shannon, A. G. (1992). An extension of circular and hyperbolic functions, International Journal of Mathematical Education in Science and Technology, 23 (4), 611–620.
Related papers
Cite this paper
Torunbalcı Aydın, F. (2020). Circular-hyperbolic Fibonacci quaternions. Notes on Number Theory and Discrete Mathematics, 26 (2), 167-176, DOI: 10.7546/nntdm.2020.26.2.167-176.
