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Abstract: In this paper, circular-hyperbolic Fibonacci numbers and quaternions are defined.
Also, some algebraic properties of circular-hyperbolic Fibonacci numbers and quaternions
which are connected with circular-hyperbolic numbers and Fibonacci numbers are investigated.
Furthermore, Honsberger’s identity, the generating function, Binet’s formula, d’Ocagne’s
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1 Introduction

The real quaternions were first described by Irish mathematician William Rowan Hamilton in
1843. Hamilton [9] introduced a set of real quaternions which can be represented as

H = { q = q0 + i q1 + j q2 + k q3 | q0, q1, q2, q3 ∈ R } (1)

where

i2 = j2 = k2 = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j .

The real quaternions constitute an extension of complex numbers into a four-dimensional
space and can be considered as four-dimensional vectors, in the same way that complex numbers
are considered as two-dimensional vectors. Horadam [10, 11] defined complex Fibonacci and
Lucas quaternions as follows:
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Qn = Fn + Fn+1 i+ Fn+2 j + Fn+3 k,

Kn = Ln + Ln+1 i+ Ln+2 j + Ln+3 k,

where Fn and Ln denote the n-th Fibonacci and Lucas numbers, respectively. Also, the imaginary
quaternion units i, j, k have the following rules

i2 = j2 = k2 = −1, i j = −j i = k, j k = −k j = i, k i = −i k = j.

The studies that follows is based on the work of Horadam [8, 19, 20].
The dual numbers are elements of the 2-dimensional real algebra

D = { z = x+ ε y | ε 6= 0, ε2 = 0 , x, y ∈ R} (2)

generating by 1 and ε, [4, 21]. The work on the dual Fibonacci numbers and quaternions can be
found in [19, 20].

Hyperbolic numbers have applications in different areas of mathematics and theoretical
physics. The work on the hyperbolic numbers can be found in [1, 2, 6, 18, 22, 23, 26]. The set
of hyperbolic numbers H can be described in the form as

H = { z = x+ h y | h /∈ R , h2 = 1 , x, y ∈ R}. (3)

Majernik has introduced the multicomponent number system [15, 16]. There are three types of
the four-component number systems which have been constructed by joining the complex, binary
and dual two-component numbers. Later, Farid Messelmi has defined the algebraic properties of
the dual-complex numbers in the light of this study [17].

Dual-hyperbolic numbers [1, 3] w can be expressed in the form as

DH = {w = z1 + ε z2 | z1, z2 ∈ H, where j2 = 1 , ε2 = 0, ε 6= 0 (jε)2 = 0}. (4)

Here if z1 = x1 + x2 j and z2 = y1 + y2 j, then any dual-hyperbolic number can be written

w = (x1 + x2 j) + ε (y1 + y2 j) (5)

j2 = 1, ε 6= 0, ε2 = 0, ε j = j ε, (j ε)2 = 0. (6)

where ∈ H is set of hyperbolic numbers.
In 2019, Cihan, Azak, Güngör and Tosun [7] have defined dual-hyperbolic Fibonacci and

Lucas numbers respectively, as follows

DHFn = Fn + Fn+1 j + Fn+2 ε+ Fn+3 j ε (7)

DHLn = Ln + Ln+1 j + Ln+2 ε+ Ln+3 j ε (8)

where Fn and Ln denote the n-th Fibonacci and Lucas numbers, respectively. Also, the imaginary
quaternion units j, ε, j ε have the following rules

j2 = 1 , ε j = j ε , ε2 = (j ε)2 = 0.
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Furthermore, some algebraic properties are proven for these numbers in [3]. Circular-hyperbolic
numbers [5] w can be expressed in the form as

CH = {w = z1 + z2 h | z1, z2 ∈ C, i2 = −1 , h2 = 1 , h 6= ±1, (i h)2 = 1}, (9)

where ∈ C is set of complex numbers. Here if z1 = x1 + i x2 and z2 = y1 + i y2, then any
circular-hyperbolic number can be written

w = (x1 + i x2) + (y1 + i y2)h (10)

h2 = 1, h 6= ±1, i h = −h i, (i h)2 = 1. (11)

Addition, subtraction and multiplication of any two circular-hyperbolic numbers w1 and w2

are defined by

w1 ± w2 = (z1 + z2 h)± (z3 + z4 h) = (z1 ± z3) + (z2 ± z4)h,
w1 × w2 = (z1 + z2 h)× (z3 + z4 h) = (z1 z3 + z2 z4) + (z1 z4 + z2 z3)h.

On the other hand, the division of two circular-hyperbolic numbers are given by

w1

w2

=
z1 + z2 h

z3 + z4 h
(z1 + z2 h)(z3 − z4 h)
(z3 + z4 h)(z3 − z4 h)

=
(z1z3 − z2z4)
z23 − z24

+
(z2 z3 − z1 z4)

z23 − z24
h.

If Re(w2) 6= 0,then the division w1

w2
is possible. The circular-hyperbolic numbers are defined

by the basis {1, i , h , i h}. The base elements of the circular-hyperbolic numbers satisfy the
following commutative multiplication scheme (Table 1).

x 1 i h i h

1 1 i h i h

i i −1 i h −h
h h −i h 1 −i
i h i h h i 1

Table 1. Multiplication scheme of circular-hyperbolic numbers

The circular-hyperbolic numbers, just like quaternions, are a generalization of complex
hyperbolic numbers by means of entities specified by four-component numbers. But hyper-
bolic and dual-hyperbolic numbers are commutative, whereas, circular-hyperbolic numbers are
non-commutative. Moreover, the multiplication of these numbers gives the circular-hyperbolic
numbers. Five different conjugations can operate on circular-hyperbolic numbers [5] as follows:
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w = x1 + ix2 + h y1 + i hy2,

w∗1 =(x1 − ix2) + (y1 − i y2)h = z∗1 + z∗2 h, complex conjugation,

w∗2 = (x1 + i x2)− (y1 + i y2)h = z1 − z2 h, hyperbolic conjugation,

w∗3 = (x1 − i x2)− (y1 − i y2)h = z∗1 − z∗2 h, coupled conjugation,

w∗4 = (x1 − i x2)− (1− y1 + i y2
x1 + ix2

h ) = z∗1 − (1− z2
z1
h),

complex-hyperbolic conjugation,

w∗5 = (y1 + i y2)− (x1 − i x2)h = z2 − z∗1 h, anti-hyperbolic conjugation.

(12)

Therefore, the norm of the circular-hyperbolic numbers is defined as

N∗1w = ‖w × w∗1‖ =
√
|z1|2 + |z2|2 + 2 εRe(z1 z2∗)h,

N∗2w = ‖w × w∗2‖ =
√
z21 − z22 ,

N∗3w = ‖w × w∗3‖ =
√
|z1|2 − |z2| − 2 i Im(z1 z2∗)h,

N∗4w = ‖w × w∗4‖ =

√
|z1|2 − (z1 −

z22
z1
) + z∗1z2 h,

N∗5w = ‖w × w∗5‖ =
√
z2 (2 i Imz1)− (|z1|2 − z22)h.

(13)

In this paper, the circular-hyperbolic Fibonacci numbers and Fibonacci quaternions will be
defined. In addition, the Honsberger identity, the d’Ocagne’s identity, the generating function,
Binet’s formula, Cassini’s identity, Catalan’s identity for these quaternions are given.

2 The circular-hyperbolic Fibonacci quaternions

The circular-hyperbolic Fibonacci and Lucas quaternions can be defined by the basis {1, i, h, i h },
where i,h and i h satisfy the conditions

i2 = −1 h 6= ±1, h2 = 1, i h = −h i (i h)2 = 1,

as follows
CHFn = (Fn + i Fn+1) + (Fn+2 + i Fn+3)h

= Fn + i Fn+1 + hFn+2 + i h Fn+3

(14)

and
CHLn = (Ln + i Ln+1) + (Ln+2 + i Ln+3)h

= Ln + i Ln+1 + hLn+2 + i hLn+3.
(15)

The addition, subtraction and multiplication by real scalars of two circular-hyperbolic
Fibonacci quaternions gives the circular-hyperbolic Fibonacci quaternion. Then, the addition
and subtraction of the circular-hyperbolic Fibonacci quaternions are defined by

CHFn ± CHFm = (Fn ± Fm) + i (Fn+1 ± Fm+1)

+h (Fn+2 ± Fm+2) + i h (Fn+3 ± Fm+3).
(16)
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The multiplication of a circular-hyperbolic Fibonacci quaternion by the real scalar λ is defined
as

λCHFn = λFn + i λ Fn+1 + hλFn+2 + i h λ Fn+3. (17)

By using Table 1, the multiplication of two circular-hyperbolic Fibonacci quaternions is defined
by

CHFn × CHFm = (Fn Fm − Fn+1 Fm+1 + Fn+2 Fm+2 + Fn+3 Fm+3)

+i (Fn+1 Fm + Fn Fm+1 − Fn+2 Fm+3 + Fn+3 Fm+2)

+h (Fn Fm+2 − Fn+1 Fm+3 + Fn+2 Fm + Fn+3 Fm+1)

+i h (Fn+1 Fm+2 + Fn Fm+3 + Fn+3 Fm − Fn+2 Fm+1)

6= CHFm × CHFn.

(18)

Also, there exits five conjugations as follows:

CHF ∗1n = Fn − i Fn+1 + hFn+2 − i h Fn+3, complex conjugation, (19)

CHF ∗2n = Fn + i Fn+1 − hFn+2 − i h Fn+3, hyperbolic conjugation, (20)

CHF ∗3n = Fn − i Fn+1 − hFn+2 + i h Fn+3, coupled conjugation, (21)

CHF ∗4n = (Fn − i Fn+1) −
(
1− (Fn+2 + i Fn+3)h

Fn + i Fn+1

)
, (22)

complex-hyperbolic conjugation, (23)

CHF ∗5n = (Fn+2 + i Fn+3)− (Fn − iFn+1)h, anti-hyperbolic conjugation. (24)

In this case, we can give the following relations:

CHFn (CHFn)
∗1 = F2n+1 − Fn+1Fn+4 + 2Fn+2 (i Fn+3 + hFn + i h Fn+1), (25)

CHFn (CHFn)
∗2 = −Fn+2Fn−1 − F2n+5 + 2Fn+1 (i Fn + hFn+3 − i h Fn+2), (26)

CHFn (CHFn)
∗3 = F2n+1 + Fn+1Fn+4 − 2Fn+3 (i Fn+2 + hFn+1 − i h Fn), (27)

CHFn (CHFn)
∗4 = F2n+1, (28)

CHFn (CHFn)
∗5 = −h (F2n+1 − F2n+5). (29)

The norm of the circular-hyperbolic Fibonacci quaternions CHFn is defined in five different
ways as follows:

NCHF
∗1
n

= ‖CHFn × (CHFn)
∗1‖2

= |F2n+1 − Fn+1Fn+4 + 2Fn+2 (i Fn+3 + hFn + i h Fn+1) |, (30)

NCHF
∗2
n

= ‖CHFn × (CHFn)
∗2‖2

= | − Fn+2Fn−1 − F2n+5 + 2Fn+1 (i Fn + hFn+3 − i h Fn+2) |, (31)

NCHF
∗3
n

= ‖CHFn × (CHFn)
∗3‖2

= |F2n+1 + Fn+1Fn+4 − 2Fn+3 (i Fn+2 + hFn+1 − i h Fn) |, (32)

NCHF
∗4
n

= ‖CHFn × (CHFn)
∗4‖2

= F 2
n + F 2

n+1 = F2n+1, (33)

NCHF
∗5
n

= ‖CHFn × (CHFn)
∗5‖2

= | − h (F2n+1 − F2n+5) |. (34)
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In the following theorem, some properties related to circular-hyperbolic Fibonacci
quaternions are given.

Theorem 1. Let Fn and CHFn be the n-th terms of Fibonacci sequence (Fn) and circular-
hyperbolic Fibonacci quaternion (CHFn), respectively. In this case, for n ≥ 1 we can give the
following relations:

CHFn = CHFn−1 + CHFn−2, (35)

CHFn+1 + CHFn−1 = CHLn, (36)

CHFn+2 − CHFn−2 = CHLn, (37)

CHFn − iCHFn+1 − hCHFn+2 − i hCHFn+3 = Fn + Fn+2 − Fn+4 − Fn+6. (38)

Proof: Using (14) and (15), the proof can easily be done. �

Theorem 2. (Honsberger identity) For n,m ≥ 0 the Honsberger identity for the circular-
hyperbolic Fibonacci quaternions CHFn and CHFm is given by

CHFn CHFm + CHFn+1 CHFm+1 = CHFn+m+1 + 2Fn+m+6

+i Fn+m+2 + hFn+m+3 + i h Fn+m+4.
(39)

Proof: By using (14) we get,

CHFn CHFm + CHFn+1CHFm+1 = (Fn+m+1 − Fn+m+3 + Fn+m+5 + Fn+m+7)

+2 i Fn+m+2 + 2hFn+m+3 + 2 i h Fn+m+4

= CHFn+m+1 + 2Fn+m+6

+i Fn+m+2 + hFn+m+3 + i h Fn+m+4,

where the identity FnFm + Fn+1Fm+1 = Fn+m+1 is used [10, 14, 24, 25]. �

Theorem 3. (Generating function) Let CHFn be the circular-hyperbolic Fibonacci quaternion.
For the generating function for these quaternions is as follows:

gCHFn(t) =
n∑

s=0

CHFn t
n =

CHF0 + (CHF1 − CHF0) t

1− t− t2
. (40)

Proof: Using the definition of generating function, we obtain

gCHFn(t) = CHF0 + CHF1 t+ . . . + CHFn t
n + . . . . (41)

Multiplying (1− t− t2) both sides of (41) and using (35), we have

(1− t− t2) gCHFn(t) = CHF0 + (CHF1 − CHF0) t .

Thus, the proof is completed. �

Theorem 4. (Binet’s Formula) Let CHFn be the circular-hyperbolic Fibonacci quaternion. For
n ≥ 1, Binet’s formula for these quaternions is as follows:

CHFn =
1

α− β

(
α̂ αn − β̂ βn

)
, (42)
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where
α̂ = 1 + i α+ hα2 + i h α3, α = 1+

√
5

2

and
β̂ = 1 + i β + hβ2 + i h β3, β = 1−

√
5

2
.

Proof: Binet’s formula of the circular-hyperbolic Fibonacci quaternion is the same as Binet’s
formula of the Fibonacci quaternion [8]. �

Theorem 5. (d’Ocagne’s identity) For n,m ≥ 0 the d’Ocagne’s identity for the circular-
hyperbolic Fibonacci quaternions CHFn and CHFm is given by

CHFm CHFn+1 − CHFm+1CHFn = (−1)n Fm−n ( 2 + i + 3h + 4 i h )

+Lm−n (i − h + i h ).
(43)

Proof: By using (14) we get,

CHFm CHFn+1 − CHFm+1 CHFn = 2 (−1)n Fm−n + i (−1)n (Fm−n + Lm−n)

+h (−1)n (3Fm−n − Lm−n)

+i h (−1)n (4Fm−n + Lm−n),

where the identity FnFm + Fn+1Fm+1 = Fn+m+1 , Fn+3 − Fn−3 = 4Fn and Fn+1 − Fn−1 = Ln

are used [14, 24, 25]. �

Theorem 6. (Cassini’s Identity) Let CHFn be the circular-hyperbolic Fibonacci quaternion. For
n ≥ 1, Cassini’s identity for CHFn is as follows:

CHFn+1 CHFn−1 − CHF 2
n = (−1)n , (2 + 2 i + 2h + 5 i h ). (44)

Proof: (44): By using (14) we get

CHFn+1 CHFn−1 − CHFn)
2 = [ (Fn+1Fn−1 − F 2

n) + (F 2
n+1 − FnFn+2)

+(Fn+3Fn+1 − F 2
n+2) + (Fn+4Fn+2 − F 2

n+3) ]

+i [ (Fn+2Fn−1 − Fn+1Fn)

+(Fn+4Fn+1 − Fn+3Fn+2) ]

+h [ (F 2
n+1 − FnFn+2)

+(Fn+1Fn+3 − F 2
n+2)

+(Fn+3Pn−1 − Fn+2Fn)

+(Fn+4Fn − Fn+3Fn+1) ]

+i h [Fn+1Fn+2 − FnFn+1)

+(Fn+4Fn−1 − Fn+3Fn)

+(Fn+2Fn+1 − Fn+3Fn) ]

= (−1)n (2 + 2 i + 2h + 5 i h ).

where the identities of the Fibonacci numbers FmFn+1 − Fm+1Fn = (−1)nFm−n is used [14,
24, 25]. �
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Theorem 7. (Catalan’s Identity) Let CHFn be the circular-hyperbolic Fibonacci quaternion.
For n ≥ 1, Catalan’s identity for CHFn is as follows:

CHF 2
n − CHFn+r CHFn−r = (−1)n−r Fr [ 2Fr + i (Fr + Lr) + h (3Fr − Lr)

+i h (4Fr + Lr) ].
(45)

Proof. By using (14), we get

CHF 2
n − CHFn+r CHFn−r = [ (F 2

n − Fn+r Fn−r)− (F 2
n+1 − Fn+r+1 Fn−r+1)

+(F 2
n+2 − Fn+r+2 Fn−r+2)

+(F 2
n+3 − Fn+r+3 Fn−r+3) ]

+i [ (Fn Fn+1 − Fn+r Fn−r+1)

+(Fn+1 Fn − Fn+r+1 Fn−r)

−(Fn+2 Fn+3 − Fn+r+2 Fn−r+3)

+(Fn+3 Fn+2 − Fn+r+3 Fn−r+2) ]

+h [ (Fn Fn+2 − Fn+r Fn−r+2)

−(Fn+1 Fn+3 − Fn+r+1 Fn−r+3)

+(Fn+2 Fn − Fn+r+2 Fn−r)

+(Fn+3 Fn+1 − Fn+r+3 Fn−r+1) ]

+i h [ (Fn Fn+3 − Fn+r Fn−r+3)

+(Fn+1 Fn+2 − Fn+r+1 Fn−r+2)

−(Fn+2 Fn+1 − Fn+r+2 Fn−r+1)

+(Fn+3 Fn − Fn+r+3 Fn−r) ]

= (−1)n−r Fr [ 2Fr + i (Fr + Lr) + h (3Fr − Lr)

+i h (4Fr + Lr) ].

where the identities of the Fibonacci numbers Fn−r Fn+r − F 2
n = (−1)n−r+1 F 2

r and
FmFn − Fm+rFn−r = (−1)n−rFm+r−n Fr are used [24]. �

3 Conclusion

In this study, a number of new results on circular-hyperbolic Fibonacci quaternions were derived.
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