Vichian Laohakosol and Pinthira Tangsupphathawat
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 4, Pages 11–17
DOI: 10.7546/nntdm.2018.24.4.11-17
Full paper (PDF, 180 Kb)
Details
Authors and affiliations
Vichian Laohakosol ![]()
Department of Mathematics, Faculty of Science
Kasetsart University, Bangkok 10900, Thailand
Pinthira Tangsupphathawat
![]()
Department of Mathematics, Faculty of Science and Technology
Phranakorn Rajabhat University, Bangkok 10220, Thailand
Abstract
An identical equation for arithmetic functions is proved generalizing the 2-variable case due to Venkataraman. It is then applied to characterize multiplicative functions which are variable-separated, and to deduce interesting properties of generalized Ramanujan sums.
Keywords
- Arithmetic function of several variables
- Identical equation
- Multiplicative functions
- Completely multiplicative functions
2010 Mathematics Subject Classification
- 11A25
References
- Alkan, E., Zaharescu, A., & Zaki, M. (2005) Arithmetical functions in several variables, Int. J. Number Theory, 1(3), 383–399.
- Brown, T. C., Hsu, L. C., Wang, J., & Shiue, P. J.-S. (2000) On a certain kind of generalized number-theoretical Möbius function, Math. Sci., 25(2), 72–77.
- Haukkanen, P. (2018) Derivation of arithmetical functions under the Dirichlet convolution, Int. J. Number Theory, 14(05), 1257–1264.
- Laohakosol, V., Ruengsinsub, P., & Pabhapote, N. (2006) Ramanujan sums via generalized Möbius functions and applications, Int. J. Math. Math. Sci., Volume 2006, Article ID 60528, 34 pages.
- Sivaramakrishnan, R. (1989) Classical Theory of Arithmetic Functions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 126, Marcel Dekker, New York.
- Souriau, J.-M. (1944) Généralisation de certaines formules arithmétiques d’inversion. Applications, Revue Scientific (Rev. Rose Illus.), 82, 204–211.
- Tóth, L. (2014) Multiplicative arithmetic functions of several variables: a survey. Mathematics Without Boundaries: Surveys in Pure Mathematics, edited by Themistocles M. Rassias, Panos M. Pardalos, pp. 483-514, Springer, New York.
- Venkataraman, C. S. (1946) A new identical equation for multiplicative functions of two arguments and its applications to Ramanujan’s sum
, Proc. Ind. Acad. Sci., XXIV(Ser. A), 518–529.
Related papers
- Haukkanen, P. (2025). Identical equations for multiplicative functions. Notes on Number Theory and Discrete Mathematics, 31(2), 289-298.
Cite this paper
Laohakosol, V., & Tangsupphathawat, P. (2018). An identical equation for arithmetic functions of several variables and applications. Notes on Number Theory and Discrete Mathematics, 24(4), 11-17, DOI: 10.7546/nntdm.2018.24.4.11-17.
