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1 Introduction

For r ∈ N, let Ar := {F : Nr → C} be the set of complex-valued arithmetic functions in r

variables. For F,G ∈ Ar, their addition and Dirichlet convolution are defined, respectively, by

(F +G)(n1, . . . , nr) = F (n1, . . . , nr) +G(n1, . . . , nr)

(F ∗G)(n1, . . . , nr) =
∑
d1| n1

· · ·
∑
dr| nr

F (d1, . . . , dr)G(n1/d1, . . . , nr/dr).

For a general reference, see also [3]. For F ∈ Ar, define its i-th (i = 1, . . . , r) component
function Fi ∈ A1 to be

Fi(n) = F (1, . . . , 1, n, 1, . . . , 1),
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where the right-hand n appears at the i-th coordinate. Denote by 1 ∈ Ar the constant 1 function,
i.e., 1(n1, . . . , nr) ≡ 1 and by 0 ∈ Ar the constant 0 function, i.e., 0(n1, . . . , nr) ≡ 0.
A function F ∈ Ar \ {0} is said to be multiplicative if

F (m1n1, . . . ,mrnr) = F (m1, . . . ,mr)F (n1, . . . , nr)

holds for any m1, . . . ,mr, n1, . . . , nr ∈ N such that gcd(m1 · · ·mr, n1 · · ·nr) = 1, and let
Mr := {F ∈ Ar ; F is multiplicative}. Clearly, if F ∈ Mr, then F (1, . . . , 1) = 1. A function
F ∈ Ar \ {0} is said to be firmly multiplicative if

F (m1n1, . . . ,mrnr) = F (m1, . . . ,mr)F (n1, . . . , nr)

holds for any m1, . . . ,mr, n1, . . . , nr ∈ N such that gcd(m1, , n1) = · · · = gcd(mr, nr) = 1,
and let Fr := {F ∈ Ar ; F is firmly multiplicative}. A function F ∈ Ar \ {0} is said to be
completely multiplicative if

F (m1n1, . . . ,mrnr) = F (m1, . . . ,mr)F (n1, . . . , nr)

holds for any m1, . . . ,mr, n1, . . . , nr ∈ N, and let

Cr := {F ∈ Ar ; F is completely multiplicative} .

Clearly, Cr ( Fr ( Mr. Note that there is no universal agreement regarding multiplicative
functions, e.g., in [1], the term ‘mutiplicative’ is used for ‘firmly multiplicative’.

In the 1-variable case, the Souriau–Hsu–Möbius function ( [2, 6]) is defined, for α ∈ C, by

µα(n) =
∏
p|n

(
α

νp(n)

)
(−1)νp(n),

where n =
∏
pνp(n) denotes the unique prime factorization of n ∈ N, νp(n) being the largest

exponent of the prime p that divides n; when α = 1, this corresponds to the classical Möbius
function µ1 := µ. The r-variable Souriau–Hsu–Möbius function is defined by

Mα(n1, . . . , nr) = µα(n1) · · ·µα(nr).

The following basic results are easily checked, cf. [7].

I. The set (Ar,+, ∗) is commutative ring with identity I (with respect to ∗), where

I(n1 . . . , nr) =

1 if n1 = · · · = nr = 1,

0 if n1 · · ·nr > 1;

note that I(n1 . . . , nr) = δ(n1) · · · δ(nr), where δ ∈ A1 is the 1-dimensional identity function
with respect to the Dirichlet convolution, i.e., δ(n) = 1 if n = 1, and δ(n) = 0 if n > 1;

II. A function F ∈ Ar has a uniquely determined inverse with respect to the convolution, denoted
by F−1, if and only if F (1, . . . , 1) 6= 0;

III. The inverse of 1 is the Möbius function M1(n1, . . . , nr) = µ(n1) · · ·µ(nr).
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2 Identitical equation and applications

The following basic results are easily derived ( [7, Propositions 1, 2]).

Proposition 2.1. I. A function F ∈ Ar is firmly multiplicative if and only if there exist multiplica-
tive functions f1, . . . , fr ∈M1 (each of a single variable) such that

F (n1, . . . , nr) = f1(n1) · · · fr(nr) (n1, . . . , nr ∈ N).

In this case, fi (i = 1, . . . , r) is the i-th component function of F , i.e., fi(n) = Fi(n).

II. A function F ∈ Ar is completely multiplicative if and only if there exist completely multiplica-
tive functions f1, . . . , fr ∈ C1 (each of a single variable) such that

F (n1, . . . , nr) = f1(n1) · · · fr(nr) (n1, . . . , nr ∈ N).

In this case, fi (i = 1, . . . , r) is the i-th component function of F , i.e., fi(n) = Fi(n).

Proposition 2.1 suggests the following notion. Let F ∈ Ar. We say that F is variable-
separated, denoted by F ∈ Vsep , if F can be written as

F (n1, . . . , nr) = f1(n1)f2(n2) · · · fr(nr), (2.1)

where fi ∈ A1 and fi(1) = fj(1) ∈ R \ {0} (1 ≤ i, j ≤ r). For F ∈ Vsep as given in
(2.1), if F ∈ Mr, then f1(1) = · · · = fr(1) = 1. Note also that the concept of variable-
separated function is trivial in the 1-variable case. Variable-separated functions are plentiful,
because most well-known classical functions such as the 1-constant function 1, the generalized
Möbius function Mα, the convolution identity function I and all firmly multilicative functions
( [7]), are variable-separated. Yet, there are indeed arithmetic functions which are not variable-
separated as seen from the example of the 2-variable function f(n1, n2) := gcd(n1, n2) ∈ A2,
which is multiplicative, but not variable-separated.

Proposition 2.1 indicates that firmly and completely multiplicative functions belong to Vsep,
and it is mentioned in [7, p. 5] that there is no similar characterization for multiplicative func-
tions. This is only partially true as we shall give a characterization based on the notion of
cardinal function, which generalizes the 2-variable case of Venkataraman [8, Theorem 3.1.2]. To
do so, we need an r-variable version of the so-called identical equation. In the 1-variable case,
it is well-known that a function f ∈ M1 satisfies an identity called its identical equation of the
form

f(nr) =
∑
t|n

∑
d|r

f(n/t)f(r/d)f−1(td)ψ(t, d),

where ψ(n, r) =

(−1)v if n and r contain the same distinct v prime factors,

0 otherwise.
This result is generalized to the 2-variable case by Venkataraman [8, p. 522], see also [5,
Chapter VII]. Before stating Venkatarama’s result, we need one more definition. A function
F (n1, . . . , nr) ∈ Mr is called cardinal function if all its component functions are equal to
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the 1-dimensional identity function, i.e., Fi(n) = δ(n) (i = 1, . . . , r). The identical equation
of Venkataraman ( [8, Theorem 3.1.2]) states that: every multiplicative function f(n, r) ∈ M2

satisfies the identity

f(n, r) =
∑
d1|n1

∑
d2|n2

f(n1/d1, 1)f(1, n2/d2)K(d1, d2),

where K(n1, n2) =
∑

d1|n1

∑
d2|n2

f−1(n1/d1, 1)f−1(1, n2/d2)f(d1, d2) is a cardinal function.
Our generalization of Venkataraman’s result is:

Theorem 2.2. If F (n1, n2, . . . , nr) ∈Mr, then

F (n1, n2, . . . , nr) = (F1F2 · · ·Fr) ∗K (n1, n2, . . . , nr)

=
∑
d1|n1

∑
d2|n2

· · ·
∑
dr|nr

F1(n1/d1)F2(n2/d2) · · ·Fr(nr/dr)KF (d1, d2, . . . , dr),

where Fi ∈ M1 (1 ≤ i ≤ r) is the i-th component function of F , and KF is a cardinal function,
called the cardinal component of F , defined by

KF (n1, n2, . . . , nr) = (F−11 F−12 · · ·F−1r ) ∗ F (n1, n2, . . . , nr)

=
∑
d1|n1

∑
d2|n2

· · ·
∑
dr|nr

F−11 (n1/d1)F
−1
2 (n2/d2) · · ·F−1r (nr/dr)F (d1, d2, . . . , dr).

Proof. Since f ∈ Mr, all its component functions are also multiplicative, i.e., Fj ∈ M1, and so
is the function g(n1, n2, . . . , nr) := F1(n1)F2(n2) · · ·Fr(nr) ∈ Mr, considered as a function in
r variables (n1, n2, . . . , nr) ∈ Nr. It is easily checked that

g−1(n1, n2, . . . , nr) = F−11 (n1)F
−1
2 (n2) · · ·F−1r (nr).

Thus,

KF (n1, n2, . . . , nr) =
∑
d1|n1

∑
d2|n2

· · ·
∑
dr|nr

g−1(n1/d1, n2/d2, . . . , nr/dr)F (d1, d2, . . . , dr)

= (g−1 ∗ F )(n1, n2, . . . , nr)

is a cardinal function with F (n1, n2, . . . , nr) = (g ∗K)(n1, n2, . . . , nr), as desired.

We now return to the problem of characterizing multiplicative functions in Vsep.

Theorem 2.3. Let F ∈ Mr. Then F ∈ Vsep if and only if KF (n1, . . . , nr), the cardinal compo-
nent of F , is equal to δ(n1)δ(n2) · · · δ(nr).

Proof. If the cardinal component of F is δ(n1)δ(n2) · · · δ(nr), using Venkataraman’s identity
(Theorem 2.2), we have

F (n1, n2, . . . , nr) =
∑
d1|n1

∑
d2|n2

· · ·
∑
dr|nr

F1(n1/d1)F2(n2/d2) · · ·Fr(nr/dr)δ(d1)δ(d2) · · · δ(dr)

= (F1 ∗ δ)(n1)(F2 ∗ δ)(n2) · · · (Fr ∗ δ)(nr) = F1(n1)F2(n2) · · ·Fr(nr) ∈ Vsep.
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Assume next that F (n1, n2, . . . , nr) = f1(n1)f2(n2) · · · fr(nr) ∈ Vsep. Since F ∈Mr, it is easily
checked that fi ∈ M1 (1 ≤ i ≤ r), and so fi(1) = 1 (1 ≤ i ≤ r). Now the component functions
of F satisfy Fi(n) = f1(1) · · · fi−1(1)fi(n)fi+1(1) · · · fr(1) = fi(n) (1 ≤ i ≤ r), so that fi is
simply the i-th component function of F . Thus, the cardinal component of f becomes

K(n1, n2, . . . , nr) =
∑
d1|n1

· · ·
∑
dr|nr

F−11 (n1/d1) · · ·F−1r (nr/dr)F1(d1) · · ·Fr(dr)

= (F−11 ∗ F1)(n1) · · · (F−1r ∗ Fr)(nr) = δ(n1) · · · δ(nr).

In order to apply Theorem 2.2, we introduce another definition. Let α ∈M1. A multiplication
Pα(n1, . . . , nr) is called a principal function equivalent to α if

Pα(n1, . . . , nr) =

α(n1) if n1 = · · · = nr,

0 otherwise.

Example 1. Let ∆(n1, n2, . . . , nr) =

1 if n2 | n1, n3 | n1, . . . , nr | n1,

0 otherwise,
∈ Ar. It is easily

checked that ∆ ∈ Mr and ∆1(n) = 1 = u(n), while each of its remaining component functions
is the 1-dimensional identity function, i.e., ∆i(n) = δ(n) (2 ≤ i ≤ r), so that ∆ is a cardinal
function. By Theorem 2.2, we have

∆(n1, n2, . . . , nr) = (u(n1)δ(n2) · · · δ(nr)) ∗Kδ(n1, n2, . . . , nr),

where

Kδ(n1, n2, . . . , nr) = (µ(n1)δ(n2) · · · δ(nr)) ∗∆ (n1, n2, . . . , nr)

=
∑
d1|n1

µ(n1/d1)∆(d1, n2, . . . , nr) =

1 = u(n1) if n1 = n2 = · · · = nr,

0 otherwise,

i.e., the cardinal component of ∆ is a principal function equivalent to u, and so

∆(n1, n2, . . . , nr) = (u(n1)δ(n2) · · · δ(nr)) ∗ Pu (n1, n2, . . . , nr).

Example 2. Our next example deals with two possible versions of a generalized Ramanujan sum
of several variables.

A. For r ≥ 2, the r-dimensional type I generalized Ramanujan sum (cf. [4] for the case of 2
variables) of order α ∈ C is defined as

C(α)(n1, n2, . . . , nr) := c(α)(n1, n2) c
(α)(n1, n3) · · · c(α)(n1, nr) ∈Mr

=
∑

d2|gcd(n1,n2)

d2µα(n2/d2)
∑

d3|gcd(n1,n3)

d3µα(n3/d3) · · ·
∑

dr|gcd(n1,nr)

drµα(nr/dr) (2.2)

=
∑

m2(mod n2)

µα−1 (gcd(m2, n2)) e
2πim2n1/n2 · · ·

∑
mr(mod nr)

µα−1 (gcd(mr, nr)) e
2πimrn1/nr .
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Its component functions are C(α)
1 (n) = 1 =: u(n), C

(α)
i (n) = µα(n) (2 ≤ i ≤ r). Thus, its

identical equation is

C(α)(n1, n2, . . . , nr) = (u(n1)µα(n2) · · ·µα(nr)) ∗KC (n1, n2, . . . , nr),

where

KC(n1, n2, . . . , nr) =
(
u−1(n1)µ

−1
α (n2) · · ·µ−1α (nr)

)
∗ C(α)(n1, n2, . . . , nr)

= (µ(n1)µ−α(n2) · · ·µ−α(nr)) ∗ C(α)(n1, n2, . . . , nr).

To simplify KC , we introduce the function η(n1, n2) =

1 if n2 | n1,

0 otherwise,
∈ M2. Thus, (2.2)

becomes

C(α)(n1, n2, . . . , nr) =
∑
d2|n2

η(n1, d2)µα(n2/d2) · · ·
∑
dr|nr

η(n1, dr)µα(nr/dr). (2.3)

Using (2.3), we get

KC(n1, . . . , nr) =
∑

d1e1=n1

∑
d2e2=n2

· · ·
∑

drer=nr

µ(d1)µ−α(d2) · · ·µ−α(dr)C
(α)(e1, e2, . . . , er)

=
∑

d1e1=n1

µ(d1)
∑

d2i2j2=n2

µ−α(d2)η(e1, i2)µα(j2) · · ·
∑

drer=nr

µ−α(dr)η(e1, ir)µα(jr)

=
∑

d1e1=n1

µ(d1)η(e1, n2) · · · η(e1, nr).

B. The r(≥ 2)-dimensional type II generalized Ramanujan sum of order α ∈ C is defined as

D(α)(n1, n2, . . . , nr) :=
∑

d|gcd(n1,n2,...,nr)

d · µα(n2/d2) · · ·µα(nr/dr) ∈Mr

=
∑
d1|n1

∑
d2|n2

µα(n2/d2) · · ·
∑
dr|nr

µα(nr/dr)PI(d1, d2, . . . , dr)

= (u(n1)µα(n2) · · ·µα(nr)) ∗ PI(n1, n2, . . . , nr), (2.4)

where PI(n1, n2, . . . , nr) is the principal function equivalent to the function I(n) = n, i.e.,

PI(n1, . . . , nr) =

I(n1) = n1 if n1 = · · · = nr,

0 otherwise.

The component functions of D(α) are D(α)
1 (n) = 1 = u(n), D

(α)
i (n) = µα(n) (2 ≤ i ≤ r).

Thus, its identical equation is

D(α)(n1, n2, . . . , nr) = (u(n1)µα(n2) · · ·µα(nr)) ∗KD (n1, n2, . . . , nr), (2.5)

where KD(n1, n2, . . . , nr) = (u−1(n1)µ
−1
α (n2) · · ·µ−1α (nr)) ∗ D(α)(n1, n2, . . . , nr). Comparing

(2.4) with (2.5), we get KD(n1, n2, . . . , nr) = PI(n1, n2, . . . , nr).
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