Anthony G. Shannon and Ömür Deveci

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 23, 2017, Number 4, Pages 85—93

**Download full paper: PDF, 201 Kb**

## Details

### Authors and affiliations

Anthony G. Shannon

*Emeritus Professor, University of Technology Sydney, NSW 2007,
Fellow, Warrane College, University of New South Wales, Kensington NSW 2033,
Director, Academic Affairs, Australian Institute of Music, Sydney NSW 2010, Australia
*

Ömür Deveci

*Department of Mathematics, Faculty of Science and Letters,
Kafkas University 36100, Turkey
*

### Abstract

Matrices are here considered in two ways: arrays containing Fibonacci numbers and their generalizations in the cells, and arrays as graphs where the cells themselves are subgraphs. Both aspects contain ideas for further development and research.

### Keywords

- Fibonacci
- Pell and Eulerian numbers
- Pyramidal numbers
- Golden section
- Spanning trees
- Lattice points

### AMS Classification

- 11B39
- 05C62

### References

- Benson, D. (2006) Music: A Mathematical Offering, Cambridge University Press, Cambridge.
- Cahill, N., & Narayan, D. (2004) Fibonacci and Lucas numbers in tridiagonal matrix determinants, The Fibonacci Quarterly, 42(3), 216–221.
- Deveci, O., & Shannon, A. G. (2017) On the adjacency-type sequences, International Journal of Advances in Mathematics, 17(2), 10–24.
- Hilton, A. J. W. (1974) Spanning trees and Fibonacci and Lucas numbers, The Fibonacci Quarterly, 12(3), 259–262.
- Horadam, A. F. (1965) Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3), 161–176.
- Horadam, A. F., & Mahon, J. M. (1986) Convolutions for Pell polynomials. In A.N. Philippou, Gerald E. Bergum and Alwyn F. Horadam (eds). Fibonacci Numbers and Their Applications, Reidel, Dordecht, 55–80.
- Jarden, D. (1958) Recurring Sequences. Riveon Lematematika, Jerusalem, 1–4.
- Kuijken, B. (2013) The Notation is Not the Music, Indiana University Press, Bloomington & Indianapolis, IN.
- Ollerton, R. L., & Shannon, A. G. (1998) Some properties of generalized Pascal squares and triangles, The Fibonacci Quarterly, 36(2), 98–109.
- Pruitt, R. (1967) Fibonacci and Lucas numbers in the sequence of golden numbers, The Fibonacci Quarterly, 5(2), 175–178.
- Quaintance, J., & Gould, H. W. (2015) Combinatorial Numbers for Stirling Numbers: The Unpublished Notes of H. W. Gould, World Scientific, New Jersey, Ch. 10.
- Rebman, K. R. (1975) The sequence 1 5 16 45 121 320 … in Combinatorics, The Fibonacci Quarterly, 13(1), 51–55.
- Shannon, A. G. (1974) Some properties of a fundamental recursive sequence of arbitrary order, The Fibonacci Quarterly, 12(4), 327–335.
- Shannon, A. G. (1978), Fibonacci and Lucas Numbers and the Complexity of a Graph, The Fibonacci Quarterly, 16(1), 1–4.
- Sloane, N. J. A., & Plouffe, S. (1968) The Encyclopedia of Integer Sequences, Academic Press, San Diego, CA.
- Stein, S. K. (1962) The intersection of Fibonacci sequences, Michigan Mathematical Journal, 9(4), 399–402.
- Whitford, A. K. (1977) Binet’s formula generalized, The Fibonacci Quarterly, 15(1), 21, 24, 29.

## Related papers

## Cite this paper

APAShannon, A. G., & Deveci, Ö. (2017). Some Variations on Fibonacci Matrix Graphs, Notes on Number Theory and Discrete Mathematics, 23(4), 85-93.

ChicagoShannon, Anthony G., and Ömür Deveci. “Some Variations on Fibonacci Matrix Graphs.” Notes on Number Theory and Discrete Mathematics 23, no. 4 (2017): 85-93.

MLAShannon, Anthony G., and Ömür Deveci. “Some variations on Fibonacci matrix graphs.” Notes on Number Theory and Discrete Mathematics 23.4 (2017): 85-93. Print.