Serpil Halici and Ömür Deveci

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 4, Pages 236–244

DOI: 10.7546/nntdm.2021.27.4.236-244

**Full paper (PDF, 205 Kb)**

## Details

### Authors and affiliations

Serpil Halici

*Department of Mathematics, Faculty of Science and Arts
Pamukkale University, Denizli, Turkey*

Ömür Deveci

*Department of Mathematics, Faculty of Science and Letters
Kafkas University, Kars, Turkey*

### Abstract

In this study, we have defined Fibonacci quaternion matrix and investigated its powers. We have also derived some important and useful identities such as Cassini’s identity using this new matrix.

### Keywords

- Quaternions
- Recurrence relations
- Matrices

### 2020 Mathematics Subject Classification

- 11B37
- 11B39
- 11R52

### References

- Akyuz, Z., & Halici, S. (2012). Some identities deriving from the
*n*th power of a special matrix. Advances in Difference Equations, 1, 223. - Cerda-Morales, G. (2013). On generalized Fibonacci and Lucas numbers by matrix methods. Hacettepe Journal of Mathematics and Statistics, 42(2), 173–179.
- Chen, Y. (2019). Quaternion group algebra and representations of the quaternions. Communications in Algebra, 47(2), 749–760.
- Deveci, Ö., & Shannon, A. G. (2018). The quaternion-Pell sequence. Communications in Algebra, 46(12), 5403–5409.
- Flaut, C., & Savin, D. (2019). Some remarks regarding l-elements defined in algebras obtained by the Cayley–Dickson process. Chaos, Solitons & Fractals, 118, 112–116.
- Halici, S. (2012). On Fibonacci Quaternions. Advances in Applied Clifford Algebras, 22(2), 321–327.
- Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The American Mathematical Monthly, 70(3), 289–291.
- Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications. Wiley-Interscience Publications.
- Mc Laughlin, J. (2004). Combinatorial identities deriving from the nth power of a 2 × 2 matrix. Integers, 4, 1–15.
- Melham, R. S.,& Shannon, A. G. (1995). Some summation identities using generalized
*Q-*matrices. Fibonacci Quarterly. 33(1), 64-73. - Shannon, A. G., & Deveci, Ö. (2017). Some variations on Fibonacci matrix graphs.
*Notes on Number Theory and Discrete Mathematics*, 23(4), 85–93. - Williams, K. S. (1992). The
*n*th power of a 2 × 2 matrix. Mathematics Magazine, 65(5), 336.

## Related papers

## Cite this paper

Halici, S., & Deveci, Ö. (2021). On Fibonacci quaternion matrix. *Notes on Number Theory and Discrete Mathematics*, 27(4), 236-244, DOI: 10.7546/nntdm.2021.27.4.236-244.