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1 Introduction 

With a slight variation of Horadam’s classic systematic and simple summary notation [4] we 

consider aspects of some extensions of some of the well-known sequences in Table 1, though 

what we elaborate below can be applied to any of these sequences or their generalizations. 

Horadam and Mahon studied these together with Chebyshev, Gegenbauer, Humbert and 

Stirling analogues [5]. The plan of this paper is to consider ( ){ },
, ; ,

k n
w a b p q  for  

• arbitrary k in Section 2; 

• fixed k = 2 in Section 3; 

• variable q in Section 4; 

• k = 2 & 3 in Section 5. 
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a b p q wn Sequence 

0 1 1 –1 Fn Fibonacci 

2 1 1 –1 Ln Lucas 

0 1 2 –1 Pn Pell 

1 3 2 –1 Qn Pell-Lucas 

0 1 x+2 +1 Bn(x) Morgan–Voyce Even Fibonacci 

1 1 x+2 +1 bn(x) Morgan–Voyce Odd Fibonacci 

2 x+2 x+2 +1 Cn(x) Morgan–Voyce Even Lucas 

-1 1 x+2 +1 cn(x) Morgan–Voyce Odd Lucas 

0 1 1 –x Jn(x) Jacobstha–Fibonacci 

2 1 1 –x jn(x) Jacobsthal–Lucas 

0 1 x +1 Vn(x) Vieta–Fibonacci 

2 x x +1 vn(x) Vieta–Lucas 

Table 1. Integer and polynomial sequences ( ){ }2,
, ; ,

n
w a b p q  

2 A Pell variation 

Consider the kth order Pell generalization ( ){ },
1,2,..., ; 2, 1

k n
w k +  formed from the recurrence 

relation 

 
, , 1 ,2 , ,k n k n k n ku u u n k

− −
= − ≥  (2.1) 

with initial values uk,j = j, j = 0, 1, 2, 3, ... . Some examples are set out in Table 2. 

 
k↓, n→ 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 2 3 4 5 6 7 8 9 10 11 12 13 

3 1 2 3 5 8 13 21 34 55 89 144 233 377 

4 1 2 3 4 7 12 21 38 69 126 231 424 779 

5 1 2 3 4 5 9 16 29 54 103 201 393 757 

6 1 2 3 4 5 6 11 20 37 70 135 264 517 

7 1 2 3 4 5 6 7 13 24 45 86 167 328 

8 1 2 3 4 5 6 7 8 15 28 53 102 199 

9 1 2 3 4 5 6 7 8 9 17 32 61 118 

10 1 2 3 4 5 6 7 8 9 10 19 36 69 

Table 2. Patterns among ( ){ }1,2;,...,2,1, kw nk  
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If we consider the elements in the backward diagonals in Table 2, then we can establish 

the sequences in Table 3 with the connections with the Eulerian numbers: 

 .0,12 ≥−−= nnE
n

n  (2.2) 

 

k↓, m→ 1 2 3 4 5 6 7 8 9 10 uk,m m > 

1 1 1 1 1 1 1 1 1 1 1 1,1 =mu  0 

2 1 2 3 4 5 6 7 8 9 10 mu m =,2  0 

3 1 3 5 7 9 11 13 15 17 19 12,3 −= mu m  1 

4 1 4 8 12 16 20 24 28 32 36 44,4 −= mu m  1 

5 1 5 13 21 29 37 45 53 61 69 118,5 −= mu m  2 

6 1 6 21 38 54 70 86 102 118 134 2616,6 −= mu m  3 

7 1 7 34 69 103 135 167 199 231 263 5732,7 −= mu m  4 

8 1 8 55 126 201 264 328 392 456 520 12064,8 −= mu m  5 

9 1 9 89 231 393 517 649 777 905 1033 
247128,9 −= mu m

 
6 

10 1 10 144 424 757 1014 1290 1546 1802 2058 
502256,10 −= mu m

 
7 

Table 3. Eulerian and generalized Pell numbers 

3 Fibonacci matrix variations 

The previous tables suggest realigning the columns by dropping the elements in successive 

columns to produce Fibonacci rectangular and Lucas square ‘triangular’ matrices as in  

Tables 4 and 5.  







































=
×

03821551

02513341

0138211

0025131

001381

000251

000131

000021

000011

000001

610F  

Table 4. A Fibonacci triangular matrix 
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Thus, F5×1 = [1, 1, 1, 1, 1]T  for instance. The ‘left triangle’ parts of these matrices lack 

the symmetry that one finds with Pascal-type triangles of these sorts of numbers [11]. 

Nevertheless, the Fibonacci triangle set out in Table 4 has several properties similar to these 

generalizations [9], including the following examples with a variety of row, column and 

diagonal properties can be discerned. 

Sums of cells: 

• row sums are Fibonacci numbers; 

• partial row sums { } ;1,23 >−
+

jFn  

• rising diagonal sums  { }.12
1

1 ++
− nn FF  

Partial recurrence relations: 

• ;1,,2,1, >+= −− juuu jijiji  

• ;1,1,1,11,, −>>−= −−− ijiuuu jijiji  

• .42, +−= jiji Fu  

Analogous variations can also be applied to the other sequences to produce companion 

matrices [3] and tridiagonal matrices [2]. Instead we now outline a corresponding Lucas 

illustration. 







































=
×

11347111829471

0213471118291

002134711181

00021347111

0000213471

0000021341

0000002131

0000000211

0000000021

0000000001

1010L  

Table 5. A Lucas triangular matrix 

4 Golden ratio variations 

Variations of the golden ratio are effectively done by looking at the sequences generated with 

different values of q. A Fibonacci golden ratio family of sequences is set out in Table 6 [cf. 10], 

and its Lucas counterpart in Table 7 [cf. 17]. 

Thus one can use Sloane’s encyclopedia for connections and creations [15]. More deeply 

one can search for intersections [16] and divisibility properties [7]. 
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),1;1,0( qwn −  1 2 3 4 5 6 7 8 9 10 11 12 

)0,1;1,0(nw  1 1 1 1 1 1 1 1 1 1 1 1 

)1,1;1,0( −nw  1 1 2 3 5 8 13 21 34 55 89 144 

)2,1;1,0( −nw  1 1 3 5 11 21 43 85 171 341 683 1365 

)3,1;1,0( −nw  1 1 4 7 19 40 97 217 508 1159 2683 6160 

)4,1;1,0( −nw  1 1 5 9 29 65 181 441 1165 2929 7589 19305 

)5,1;1,0( −nw  1 1 6 11 41 96 301 781 2286 6191 17621 48576 

)6,1;1,0( −nw  1 1 7 13 55 133 463 1261 4039 11605 35839 105469 

)7,1;1,0( −nw  1 1 8 15 71 176 673 1905 6616 19951 66263 205920 

Table 6. Fibonacci variations 

),1;1,2( qwn −  0 1 2 3 4 5 6 7 8 9 10 11 

)0,1;1,2(nw  2 2 2 2 2 2 2 2 2 2 2 2 

)1,1;1,2( −nw  2 1 3 4 7 11 18 29 47 76 123 199 

)2,1;1,2( −nw  2 1 5 7 17 31 65 127 257 511 1025 2047 

)3,1;1,2( −nw  2 1 7 10 31 61 154 337 799 1810 4207 9637 

)4,1;1,2( −nw  2 1 9 13 49 101 297 701 1889 4693 12249 31021 

)5,1;1,2( −nw  2 1 11 16 71 151 506 1261 3791 10096 29051 79531 

)6,1;1,2( −nw  2 1 13 19 97 211 793 2059 6817 19171 60073 175099 

)7,1;1,2( −nw  2 1 15 22 127 281 1170 3137 11327 33286 112575 345577 

Table 7. Lucas variations 

5 Cells in matrices 

We now consider the matrix arrays as graphs in themselves. For simplicity, we start with square 

matrices which are divided into sub-graphs containing 1, 4, 9, 16, ..., square matrices as 

illustrated in Figure 1. 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

   

   

   
 

 

 

    

    

    

    
 

Figure 1. Matrices with 1, 4, 9, 16 cells 

Immediately we observe that the number of squares contained in each matrix is 1, 5, 14, 

30, 55, ..., the square pyramidal numbers, generated by n(n + 1)(2n + 1)/6, where n2 is the 

number of cells contained with the whole matrix. There is a wealth of literature on pyramidal 

numbers [17: M3844] which we do not plan to pursue here. Rather we continue to consider 

aspects of these subgraphs. 
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Connections with Fibonacci matrices and graphs occur through spanning trees and the 

complexity of a graph [6, 12, 14], but many problems remain. For instance, by extending the 

squares in Figure 1 through their diagonals, we obtain the planar representation of a trellis (or 

wire mesh) fence consists of sets of ‘crosses’ or ‘squares’ as shown in Figure 2. 

 
        

        

        

        

        

 

Figure 2. Representation of a section of trellis (wire-mesh) 

 
Immediately a number of non-trivial questions arise, such as how many squares? sym-

metric crosses? rectangles? lattice points? crosses (symmetric or asymmetric)? spanning trees? 

Attempts to solve the problems are probably best illustrated by construction. In general, 

one would expect the solutions to be functions of the numbers of edges and vertices. We define 

a trellis of a given size and position in the plane as even or odd: 

• an even trellis, fn,m, is the set of integer lattice points yxyx +:),{(  is even, 

,20 nx ≤≤ };20 my ≤≤  

• an odd trellis, gn,m, is the set of integer lattice points yxyx +:),{(  is odd, 

,20 nx ≤≤ }.20 my ≤≤  

Figures 3 (a), (b), (c), (d) show the cases for ‘fences’ f1,m, f2,m, f3,m , m = 1, 2, 3, respectively, 

where {fn,m} represents the set of single-edged symmetric crosses of fences with ‘height’ n and 

‘length’ m.  Thus in Figure 2, {f2,m}, m = 1, 2, 3,  is the set of 3 single-edged symmetric crosses 

of height 2 such crosses. 

 

                    

                    

 

 (a) mf ,1   (b) mf ,2  

 

                  

                  

                  

 

 (c) mf ,3   (d) 2,3g  

Figure 3. Representation of fences  
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Let en,m be the number of edges in fn,m. Then, since fn,m is constructed by an mn ×  lattice 

of crosses and each cross contributes four edges, it follows that 

 fn,m = 4nm. (5.1) 

See the black dots in Figure 4 and the entries in Table 8. 

 

 

Figure 4. 3,2f  

 
n↓ m→ 1 2 3 4 5 

1 4 8 12 16 20 

2 8 16 24 32 40 

3 12 24 36 48 60 

4 16 32 48 64 80 

Table 8. mne ,  

Similarly let mnmn fv ,, ∈  and mnmn gw ,, ∈  be the corresponding numbers of vertices (Table 9). 

 
n↓ m→ 1 2 3 4 5 

1 5 8 11 14 17 

2 8 13 18 23 28 

3 11 18 25 32 39 

4 14 23 32 41 50 

Table 9. mnv ,  

For mnv ,  there are nm black dots and (n+1)(m+1) white dots for a total of  

 ( )( ) .1211, +++=+++= mnnmmnnmv mn  (5.2) 
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Figure 5. g3,6 

6 Concluding comments 

Various other extensions and generalizations of the sequences in Table 1 can be readily 

investigated. For example, just as for the second-order Pell sequences 

{ } ( ){ } { } ( ){ }1,2;3,1,1,2;1,0 ,2,2,2,2 −≡−≡ nnnn wQwP  

there is the connection  

 1,2,2,2 ++= nnn PPQ  (4.1) 

so too for the corresponding third-order Pell sequences 

{ } ( ){ } { } ( ){ }1,2;3,1,1,1,2;1,0,0 ,3,3,3,3 −≡−≡ nnnn wQwP  

there is also the connection  

 1,3,31,3,3 +− ++= nnnn PPPQ  (5.2) 

where the third-order recurrence relation is 

.2,2,31,3,3 ≥+= −− nwww nnn  

While at one level almost any desired elegant identity can be obtained by a suitable 

choice of initial values, the selection can be determined by us with the use of “basic” sequences 

and corresponding matrices. At order k, there will be k basic fundamental sequences and one 

primordial sequence, and corresponding matrices [13].  

More fundamentally though, these ideas provide a source of multitudes of undergraduate 

exercises which students generally seem to enjoy both computationally and symbolically, the 

latter helping to cultivate a feeling for notation as a tool of thought, not only in mathematics but 

also in music [8], two disciplines which share much in common with the creative processes 

both in doing and in discovering [1]. 
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