Samuel G. Moreno and Esther M. García-Caballero

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 23, 2017, Number 3, Pages 35—37

**Download full paper: PDF, 133 Kb**

## Details

### Authors and affiliations

Samuel G. Moreno

*Departamento de Matematicas, Universidad de Jaén
23071 Jaen, Spain
*

Esther M. García-Caballero

*Departamento de Matematicas, Universidad de Jaén
23071 Jaen, Spain
*

### Abstract

We give an alternative proof of a formula that generalizes Hermite’s identity. Instead involving modular arithmetic, our short proof relies on the Fourier-type expansion for the floor function and on a trigonometric formula.

### Keywords

- Floor function
- Fourier expansion
- Trigonometric identity

### AMS Classification

- Primary: 11A99
- Secondary: 42A10, 33B10

### References

- Graham, R. L., Knuth, D. E., & Patashnik, O. (1994) Concrete Mathematics: A Foundation for Computer Science. Second edition. Addison-Wesley Publishing Co., Reading, Massachusetts.
- The Wolfram Functions Site, http://functions.wolfram.com/ ElementaryFunctions/Sin/23/01/0003/.

## Related papers

## Cite this paper

APAMoreno, S. G., & García-Caballero, E. M. (2017). A short proof of a concrete sum, Notes on Number Theory and Discrete Mathematics, 23(3), 35-37.

ChicagoMoreno, Samuel G., and Esther M. García-Caballero. “A short proof of a concrete sum.” Notes on Number Theory and Discrete Mathematics 23, no. 3 (2017): 35-37.

MLAMoreno, Samuel G., and Esther M. García-Caballero. “A short proof of a concrete sum.” Notes on Number Theory and Discrete Mathematics 23.3 (2017): 35-37. Print.