Ömür Deveci and Anthony G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 23, 2017, Number 3, Pages 100—114

**Download full paper: PDF, 315 Kb**

## Details

### Authors and affiliations

Ömür Deveci

*Associate Professor, Faculty of Science and Letters
Kafkas University 36100, Turkey
*

Anthony G. Shannon

*Emeritus Professor, Faculty of Engineering & IT, University of Technology
Sydney, 2007, Australia
*

### Abstract

This paper develops properties of recurrence sequences defined from circulant matrices obtained from the characteristic polynomial of the Pell-Padovan sequence. The study of these sequences modulo m yields cyclic groups and semigroups from the generating matrices. Finally, we obtain the lengths of the periods of the extended sequences in the extended triangle groups *E*(2, *n*, 2), *E*(2, 2, *n*) and *E*(*n*, 2, 2) for *n* ≥ 3 as applications of the results obtained.

### Keywords

- Circulant matrix
- Sequence
- Group
- Length

### AMS Classification

- 11B50
- 20F05
- 11C20
- 20D60

### References

- Ablar, M. A. & Al-Hamdan, W. M. (1993) The triangle groups, Rendiconti del Seminario Matematico della Universita Di Padova, 89, 103–111.
- Aydın, H. & Smith, G. C. (1994) Finite p-quotients of some cyclically presented groups, J. London Math. Soc., 49, 83–92.
- Barnett, S. (1990) Matrices: methods and applications, Oxford University Press, New York.
- Bozkurt, D. & Tam, Tin-Yau (2012) Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal–Lucas numbers, Appl. Math. Comput., 219(2), 544–551.
- Campbell, C. M. & Campbell, P. P. (2009) The Fibonacci lengths of binary polyhedral groups and related groups, Congr. Numer., 194, 95–102.
- Conder, M. D. E. (2003) Group actions on graphs, maps and surfaces with maximum symmetry, in C. M. Campbell, E. F. Robertson and G. C. Smith (eds), Groups St Andrews 2001 in Oxford, Vol. 1, Cambridge University Press, Cambridge, 63–91.
- Coxeter, H. S. M. & Moser, W. O. J. (1972) Generators and relations for discrete groups, 3rd edition, Springer, Berlin.
- Davis, P. J. (1979) Circulant Matrices, Wiley, New York.
- Deveci, O. (2015) The Pell–Padovan sequences and the Jacobsthal–Padovan sequences in finite groups, Util. Math., 98, 257–270.
- Deveci, O. & Akuzum, Y. (2014) The cyclic groups and the semigroups via MacWilliams and Chebyshev matrices, J. Math. Res., 6(2), 55–58.
- Deveci, O. & Akuzum, Y. The recurrence sequences via Hurwitz matrices, The Scientific Annals of “Al. I. Cuza” University of Iasi (to appear).
- Deveci, O. & Karaduman, E. (2012) The cyclic groups via the Pascal matrices and the generalized Pascal matrices, Linear Algebra and its Appl., 437, 2538–2545.
- Deveci, O. & Karaduman, E. (2015) The Pell sequences in finite groups, Util. Math., 96, 263–276.
- Dikici, R. & Smith, G.C. (1997) Fibonacci sequences in finite nilpotent groups, Turkish J. Math., 21, 133–142.
- Doostie, H. & Hashemi, M. (2006) Fibonacci lengths involving the Wall number
*k*(*n*), J. Appl. Math. Comput., 20, 171–180. - Ingleton, A.W. (1956) The rank of circulant matrices, J. London Math. Soc., 1–31(4), 445–460.
- Kalman, D. (1982) Generalized Fibonacci numbers by matrix methods, The Fibonacci Quart., 20(1), 73–76.
- Kilic, E. (2009) The generalized Pell (
*p*,*i*)-numbers and their Binet formulas, combinatorial representations, sums, Chaos, Solitons Fractals, 40(4), 2047–2063. - Knox, S.W. (1992) Fibonacci sequences in finite groups, The Fibonacci Quart., 30(2), 116–120.
- Lü, K. & Wang, J. (2006)
*k*-step Fibonacci sequence modulo m, Util. Math., 71, 169– 177. - Muir, T. (1911) The theory of determinants in historical order of development, Volume 4, Macmillan and Co, London.
- Ozkan, E. (2014) Truncated Lucas Sequences and its period, Appl. Math. and Compt., 232, 285–291.
- Pan, H. & Zhaolin, J. (2015) Van der Laan circulant type matrices, Abstract and Applied Analysis, Vol.2015, Article ID 329329, http://dx.doi.org/10.1155/2015/329329, 11 pp.
- Shannon, A. G., Anderson, P. G. & Horadam, A. F. (2006) Properties of Cordonnier, Perrin and Van der Laan numbers, Int. J. Math. Educ. Technol., 37(7), 825–831.
- Shannon, A. G,. Horadam, A. F. & Anderson, P. G. (2006) The auxiliary equation associated with the plastic number, Notes Numb. Theory Disc. Math.,12(1), 1–12.
- Spinadel, V. W. (2002) The metallic means family and forbidden symmetries, Int. Math J., 2(3), 279–288.
- Stakhov, A. P. & Rozin, B. (2006) Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitons, Fractals, 27, 1162–1167.
- Tas, S. & Karaduman, E. (2014) The Padovan sequences in finite groups, Chaing Mai J. Sci., 41(2), 456–462.
- Tasci, D. (2011) Pell Padovan numbers and polynomials, IV. Congress of The Turkic World Mathematical Society, Bakü, Azerbaycan.
- Tasci, D. & Firengiz, M. C. (2010) Incomplete Fibonacci and Lucas
*p*-numbers, Math. and Compt. Modell., 52(9), 1763–1770. - Tuglu, N., Kocer, E. G. & Stakhov, A. P. (2011) Bivariate Fibonacci like
*p*-polinomials, Appl. Math. and Compt., 217(24), 10239–10246. - Vajda, S. (1989) Fibonacci and Lucas numbers, and the Golden section theory and applications, New York, John Wiley & Sons.
- Wall, D. D. (1960) Fibonacci series modulo
*m*, Amer. Math. Monthly, 67, 525–532. - Yilmaz, F. & Bozkurt, D. (2009) The generalized order-
*k*Jacobsthal numbers, Int. J. Contemp. Math. Sciences, 4(34), 1685–1694.

## Related papers

- İpek, G., Deveci, Ö.
*,*& Shannon, A. G. (2020). On the Padovan*p*-circulant numbers. Notes on Number Theory and Discrete Mathematics, 26 (3), 224-233.

## Cite this paper

APADeveci, Ö, & Shannon, A. G. (2017). Pell–Padovan-circulant sequences and their applications, Notes on Number Theory and Discrete Mathematics, 23(3), 100-114.

ChicagoDeveci, Ömür, and Anthony G. Shannon. “Pell–Padovan-circulant sequences and their applications.” Notes on Number Theory and Discrete Mathematics 23, no. 3 (2017): 100-114.

MLADeveci, Ömür, and Anthony G. Shannon. “Pell–Padovan-circulant sequences and their applications.” Notes on Number Theory and Discrete Mathematics 23.3 (2017): 100-114. Print.