Joo-Hee Jeong, Jin-Woo Park, Seog-Hoon Rim and Joung-Hee Jin
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 21, 2015, Number 1, Pages 10–17
Full paper (PDF, 129 Kb)
Details
Authors and affiliations
Joo-Hee Jeong
Department of Mathematics Education, Kyungpook National University
Taegu 702-701, Republic of Korea
Jin-Woo Park
Department of Mathematics Education, Sehan University
YoungAm-gun, Chunnam, 526-702, Republic of Korea
Seog-Hoon Rim
Department of Mathematics Education, Kyungpook National University
Taegu 702-701, Republic of Korea
Joung-Hee Jin
Department of Mathematics Education, Kyungpook National University
Taegu 702-701, Republic of Korea
Abstract
In this paper we will give the Lebesgue–Radon–Nikodym theorem with respect to weighted and twisted p-adic q-measure on ℤp. In special case, if there is no twisted, then we can derive the same result as Jeong and Rim, 2012; If the case weight zero and no twist, then we derive the same result as Kim 2012.
Keywords
- p-adic invariant integral
- p-adic q-measure
- Lebesgue–Radon–Nikodym theorem
AMS Classification
- 11B68
- 11S80
References
- Bayad, A. & T. Kim. (2011) Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys., 18(2), 133–143.
- Calabuig, J. M., P. Gregori & E. A Sanchez Perez. (2008) Radon–Nikodym derivative for vector measures belonging to Kothe function space. J. Math. Anal. Appl. 348, 469–479.
- Choi, J., T. Kim & Y. H. Kim. (2011) A note on the q-analogues of Euler numbers and polynomials, Honam Mathematical Journal, 33(4), 529–534.
- George, K. (2008) On the Radon–Nikodym theorem, Amer. Math. Monthly, 115, 556–558.
- Jeong, J. & S. H. Rim. (2012) A note on the Lebesgue–Radon–Nikodym theorem with respect to weighted p-adic invariant integral on Zp, Abstract and Applied Analysis, 2012, Article ID 696720, 8 pages.
- Kim, T. (2002) q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288–299.
- Kim, T. (2012) Lebesgue–Radon–Nikodym theorem with respect to fermionic p-adic invariant measure on Zp, Russ. J. Math. Phys. 19, 193–196.
- Kim, T. (2007) Lebesgue–Radon–Nikodym theorem with respect to fermionic q-Volkenborn distribution on q. Appl. Math. Comp., 187, 266–271.
- Kim, T. (2011) A note on q-Bernstein polynomials. Russ. J. Math. Phys. 18(1), 73–82.
- Kim, T. (2008) Note on the Euler numbers and polynomials. Adv. Stud. Contemp. Math., 17, 131–156.
- Kim, T. (2009) Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Zp. Russ. J. Math. Phys. 16, 484–491.
- Kim, T. (2010) New approach to q-Euler polynimials of higher order. Russ. J. Math. Phys. 17, 218–225.
- Kim, T., J. Choi & H. Kim A note on the weighted Lebesgue–Radon–Nikodym theorem with respect to p-adic invariant integral on Zp. to appear in JAMI.
- Kim, T., D. V. Dolgy, S. H. Lee & C. S. Ryoo. (2011) Analogue of Lebesgue–Radon–Nikodym theorem with respect to p-adic q-measure on Zp. Abstract and Applied Analysis, 2011, Article ID637634, 6 pages.
- Kim, T., S. D. Kim, & D. W. Park. (2001) On Uniformly differntiabitity and q-Mahler expansion. Adv. Stud. Contemp. Math., 4, 35–41.
- Kim, Y. H., B. Lee & T. Kim. (2011) On the q-extension of the twisted generalized Euler numbers and polynomials attached to χ. J. of Comp. Anal. and Appl., 13(7), 1208–1213.
- Jeong, J. & S. H. Rim. (2012) A note on the Lebesgue–Radon–Nikodym theorem with respect to weighted p-adic invariant integral on Zp. Abstract and Applied Analysis, 2012, Article ID 696720, 8 pages.
Related papers
Cite this paper
Jeong, J.-H., Park, J.-W., Rim, S.-H., & Jin, J.-H. (2015). A note on the Lebesgue–Radon–Nikodym theorem with respect to weighted and twisted p-adic invariant integral on ℤp. Notes on Number Theory and Discrete Mathematics, 21(1), 10-17.