A note on the Lebesgue–Radon–Nikodym theorem with respect to weighted and twisted p-adic invariant integral on \mathbb{Z}_p

Joo-Hee Jeong¹, Jin-Woo Park², Seog-Hoon Rim¹ and Joung-Hee Jin¹

¹ Department of Mathematics Education, Kyungpook National University Taegu 702-701, Republic of Korea e-mails: jhjeong@knu.ac.kr, shrim@knu.ac.kr, jhjin@knu.ac.kr
² Department of Mathematics Education, Sehan University

YoungAm-gun, Chunnam, 526-702, Republic of Korea e-mail: a0417001@knu.ac.kr

Abstract: In this paper we will give the Lebesgue–Radon–Nikodym theorem with respect to weighted and twisted *p*-adic *q*-measure on \mathbb{Z}_p . In special case, if there is no twisted, then we can derive the same result as Jeong and Rim, 2012; If the case weight zero and no twist, then we derive the same result as Kim 2012.

Keywords: *p*-adic invariant integral, *p*-adic *q*-measure, Lebesgue–Radon–Nikodym theorem. **AMS Classification:** 11B68, 11S80.

1 Introduction

Let p be a fixed odd prime number. Throughout this paper, the symbols \mathbb{Z}_p , \mathbb{Q}_p , and \mathbb{C}_p denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \mathbb{Q}_p , respectively. The p-adic norm $|.|_p$ is defined by $|x|_p = p^{-v_p(x)} = p^{-r}$ for $x = p^r \frac{s}{t}$, where s and t are integers with (p, s) = (p, t) = 1 and $r \in \mathbb{Q}$ (see [1–16]).

When one speaks of q-extension, q can be regard as an indeterminate, a complex $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. In this paper we assume that $q \in \mathbb{C}_p$ with $|q - 1|_p < p^{-\frac{1}{p-1}}$ and we use the notations of q-numbers as follows:

$$[x]_q = [x:q] = \frac{1-q^x}{1-q}, \text{ and } [x]_{-q} = \frac{1-(-q)^x}{1+q}.$$

For $n \in \mathbb{Z}_+$, let $C_{p^n} = \{w \mid w^{p^n} = 1\}$ be the cyclic group of order p^n and let T_p be the space of locally constant space, i.e, $T_p = \lim_{n \to \infty} C_{p^n} = \bigcup_{n \ge 0} C_{p^n}$. For any positive integer N, let

$$a + p^{N} \mathbb{Z}_{p} = \left\{ x \in \mathbb{Z}_{p} | x \equiv a \pmod{p^{N}} \right\}$$
(1)

where $a \in \mathbb{Z}$ satisfies the condition $0 \le a < p^N$ (see [1, 2, 3, 5-9]).

It is known that the fermionic *p*-adic *q*-measure on \mathbb{Z}_p is given by Kim as follows:

$$\mu_{-q}(a+p^N \mathbb{Z}_p) = \frac{(-q)^a}{[p^N]_{-q}} = \frac{1+q}{1+q^{p^N}}(-q)^a,$$
(2)

(see [5, 7, 12–16]).

Let $C(\mathbb{Z}_p)$ be the space of continuous functions on \mathbb{Z}_p . From (2), the fermionic *p*-adic *q*-integral on \mathbb{Z}_p is defined by Kim as follows:

$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N - 1} f(x) (-q)^x,$$
(3)

where $f \in C(\mathbb{Z}_p)$ (see [1, 5, 7, 12-16]).

For $w \in T_p$, we consider the twisted q-Euler polynomials $\varepsilon_{n,q}^w(x)$ as

$$\int_{\mathbb{Z}_p} q^{-y} w^y e^{[x+y]_q} d\mu_{-q}(y) = \sum_{n=0}^{\infty} \varepsilon_{n,q}^w(x) \frac{t^n}{n!}$$
(4)

From (4), we can derive the following equation.

$$\varepsilon_{n,q}^{w}(x) = \frac{[2]_q}{(1-q)^n} \sum_{l=0}^n (-1)^l \frac{q^{lx}}{1+wq^l},$$
(5)

(see [16]).

From (5), we note that $\lim_{q\to 1} \varepsilon_{n,q}^w(x) = \varepsilon_n^w(x)$. In special case, x = 0, we have $\varepsilon_{n,q}^w(0) = \varepsilon_{n,q}^w$ are the *n*-th twisted *q*-Euler number, we have

$$\varepsilon_{n,q}^{w} = \int_{\mathbb{Z}_p} q^{-y} w^{y} [x]_{q}^{n} d\mu_{-q}(y) = \frac{[2]_{q}}{(1-q)^{n}} \sum_{l=0}^{n} (-1)^{l} \frac{1}{1+wq^{l}}.$$
(6)

In special, we have

$$\varepsilon_{0,q}^w = \frac{[2]_q}{1+w}.\tag{7}$$

The idea for generalizing the fermionic integral is replacing the fermionic Haar measure with weakly (strongly) fermionic measure \mathbb{Z}_p satisfying

$$\left|\mu_{-1}(a+p^{n}\mathbb{Z}_{p})-\mu_{-1}(a+p^{n+1}\mathbb{Z}_{p})\right|_{p} \leq \delta_{n,q},$$
(8)

where $\delta_{n,q} \to 0$, *a* is a element of \mathbb{Z}_p , and $\delta_{n,q}$ is independent of *a* (for strongly fermionic measure, $\delta_{n,q}$ is replaced by Cp^{-n} , where *C* is a positive constant)(see [5, 7, 8, 13]).

Let f(x) be a function defined on \mathbb{Z}_p . The fermionic integral of f with respect to a weakly fermionic measure μ_{-1} is

$$\int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) = \lim_{n \to \infty} \sum_{x=0}^{p^n - 1} f(x) \mu_{-1}(x + p^n \mathbb{Z}_p),$$

if the limit exists.

If μ_{-1} is a weakly fermionic measure on \mathbb{Z}_p , then the Radon–Nikodym derivative of μ_{-1} with respect to the Haar measure on \mathbb{Z}_p as follows:

$$f_{\mu_{-1}}(x) = \lim_{n \to \infty} \mu_{-1}(x + p^n \mathbb{Z}_p),$$
(9)

(see [5, 7]).

Note that $f_{\mu_{-1}}$ is only a continuous function on \mathbb{Z}_p . Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p . For $f \in UD(\mathbb{Z}_p)$, let us define $\mu_{-1,f}$ as follows:

$$\mu_{-1,f}(x+p^n \mathbb{Z}_p) = \int_{x+p^n \mathbb{Z}_p} f(x) d\mu_{-1}(x),$$
(10)

where the integral is the fermionic *p*-adic invariant integral. From (9), we can easily note that $\mu_{-1,f}$ is a strongly fermionic measure on \mathbb{Z}_p (see [5, 7]). Since

$$\begin{aligned} \left| \mu_{-1,f}(x+p^n \mathbb{Z}_p) - \mu_{-1,f}(x+p^{n+1} \mathbb{Z}_p) \right|_p &= \Big| \sum_{x=0}^{p^n-1} f(x)(-1)^x - \sum_{x=0}^{p^n} f(x)(-1)^x \Big|_p \\ &= \Big| \frac{f(p^n)}{p^n} \Big| \left| p^n \right| \le Cp^{-n}, \end{aligned}$$

where C is positive consatnt.

In this paper, we will give the Lebesgue–Radon–Nikodym theorem with respect to weighted and twisted *p*-adic *q*-measure on \mathbb{Z}_p . In special case, if there is no twisted, then we can derive the same result as Jeong and Rim, 2012 (see [5]). In the case of weight zero and no twisted, then we derive the same result as Kim, 2012 (see [7]).

2 The Lebesgue–Radon–Nikodym theorem with respect to the weighted *p*-adic *q*-measure

For any positive integer a and n with $a < p^n$ and $f \in UD(\mathbb{Z}_p)$, we define $\tilde{\mu}_{f,-q}^w$, weighted and twisted ferminonic measure on \mathbb{Z}_p as follows:

$$\tilde{\mu}_{f,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = \int_{a+p^{n}\mathbb{Z}_{p}} w^{x}q^{x}f(x)d\mu_{-1}(x)$$
(11)

where the integral is the fermionic *p*-adic invariant integral on \mathbb{Z}_p .

From (11), we note that

$$\tilde{\mu}_{f,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = \lim_{m \to \infty} \sum_{x=0}^{p^{m}-1} f(a+p^{n}x)(-1)^{a+p^{n}x}q^{a+p^{n}x}w^{a+p^{n}x}$$
$$= (-1)^{a}w^{a}q^{a}\lim_{m \to \infty} \sum_{x=0}^{p^{m-n}-1} f(a+p^{n}x)(-1)^{x}q^{p^{n}x}$$
$$= (-1)^{a}\int_{\mathbb{Z}_{p}} w^{a}f(a+p^{n}x)q^{a+p^{n}x}d\mu_{-1}(x).$$
(12)

By (12), we get

$$\tilde{\mu}_{f,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = (-1)^{a} \int_{\mathbb{Z}_{p}} w^{a} f(a+p^{n}x)q^{a+p^{n}x} d\mu_{-1}(x).$$
(13)

Thus, by (13), we have

$$\tilde{\mu}_{\alpha f+\beta g,-q} = \alpha \tilde{\mu}_{f,-q} + \beta \tilde{\mu}_{g,-q},\tag{14}$$

where $f, g \in UD(\mathbb{Z}_p)$ and α, β are positive constants.

By (11), (12), (13) and (14), we get

$$\left|\tilde{\mu}_{f,-q}^{w}(a+p^{n}\mathbb{Z}_{p})\right|_{p} \leq \|f_{wq}\|_{\infty},\tag{15}$$

where $||f_{wq}||_{\infty} = \sup_{x \in \mathbb{Z}_p} |f(x)q^x w^x|_p$.

Let $P(x) \in \mathbb{C}_p[[x]_q]$ be an arbitrary q-polynomial. Now we show $\tilde{\mu}_{P,-q}^w$ is a strongly weighted and twisted fermionic p-adic invariant measure on \mathbb{Z}_p . Without a loss of generality, it is enough to prove the statement for $P(x) = [x]_q^k$.

For $a \in \mathbb{Z}$ with $0 \le a < p^n$, we have

$$\tilde{\mu}_{P,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = \lim_{m \to \infty} (-q)^{a} w^{a} \sum_{i=0}^{p^{m-n}-1} q^{p^{n}i} [a+ip^{n}]_{q}^{k} (-1)^{i}.$$
(16)

Note that

$$[a+ip^n]_q^k = ([a]_q + q^a[p^n]_q[i]_{q^{p^n}})^k.$$
(17)

By (6), (16) and (17),

$$\tilde{\mu}_{p,-q}^{w} = \left\{ [a]_{q}^{k} \tilde{\varepsilon}_{0,q^{p^{n}}} + k[a]_{q}^{k-1} q^{a} [p^{n}]_{q} [i]_{q^{p^{n}}} + \dots + q^{ak} [p^{n}]_{q}^{k} [i]_{q^{p^{n}}}^{k} \right\}.$$

By (7), (12) and (13), we easily get

$$\tilde{\mu}_{P,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) \equiv (-1)^{a}q^{a}w^{a}[a]_{q}^{k}\varepsilon_{0,q^{p^{n}}}^{w^{p^{n}}} \pmod{[p^{n}]_{q}} \equiv (-1)^{a}\frac{1+q^{p^{n}}}{1+w^{p^{n}}}P(a)q^{a}w^{a} \pmod{[p^{n}]_{q}}.$$
(18)

For $x \in \mathbb{Z}_p$, let $x \equiv x_n \pmod{p^n}$ and $x \equiv x_{n+1} \pmod{p^{n+1}}$, where $x_n, x_{n+1} \in \mathbb{Z}$ with $0 \le x_n < p^n$ and $0 \le x_{n+1} < p^{n+1}$. Then we have

$$\left|\tilde{\mu}_{P,-q}^{w}(a+p^{n}\mathbb{Z}_{p})-\tilde{\mu}_{P,-q}^{w}(a+p^{n+1}\mathbb{Z}_{p})\right|_{p} \leq Cp^{-v_{p}(1-q^{p^{n}})},$$
(19)

where C is positive constant and $n \gg 0$.

Let

$$f_{\tilde{\mu}_{P,-q}^{w}}(a) = \lim_{n \to \infty} \tilde{\mu}_{P,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = (-1)^{a}q^{a}w^{a}.$$

Then, by (18) and (19), we see that

$$f_{\tilde{\mu}_{P,-q}^{w}}(a) = (-1)^{a} q^{a} w^{a} [a]_{q}^{k} = (-1)^{a} q^{a} w^{a} P(a).$$
⁽²⁰⁾

Since $f_{\tilde{\mu}_{P,-q}^w}(x)$ is continuous function on \mathbb{Z}_p , for $x \in \mathbb{Z}_p$, we have

$$f_{\tilde{\mu}_{P,-q}^{w}}(x) = (-1)^{x} q^{x} w^{x} [x]_{q}^{k}, (k \in \mathbb{Z}_{+}).$$
(21)

Let $g \in UD(\mathbb{Z}_p)$. Then, by (19), (20) and (21), we get

$$\int_{\mathbb{Z}_p} g(x) d\tilde{\mu}_{P,-q}^w(x) = \lim_{n \to \infty} \sum_{x=0}^{p^n - 1} g(x) \tilde{\mu}_{P,-q}^w(x + p^n \mathbb{Z}_p)$$
$$= \lim_{n \to \infty} \sum_{x=0}^{p^n - 1} g(x) q^x w^x [x]_q^k (-1)^x$$
$$= \int_{\mathbb{Z}_p} g(x) q^x w^x [x]_q^k d\mu_{-1}(x).$$
(22)

Therefore, by (22), we obtain the following theorem.

Theorem 2.1. Let $P(x) \in \mathbb{C}_p[[x]_q]$ be an arbitrary q-polynomial. Then $\tilde{\mu}_{P,-q}^w$ is a strongly weighted and twisted fermionic p-adic invariant measure on \mathbb{Z}_p . Then we have

$$f_{\tilde{\mu}_{P,-q}^w}(x) = (-1)^x q^x w^x P(x) \quad \text{for all} \quad x \in \mathbb{Z}_p.$$

Furthermore, for any $g \in UD(\mathbb{Z}_p)$ *,*

$$\int_{\mathbb{Z}_p} g(x) d\tilde{\mu}^w_{P,-q}(x) = \int_{\mathbb{Z}_p} g(x) P(x) q^x w^x d\mu_{-1}(x),$$

where the second integral is weighted and twisted fermionic *p*-adic invariant integral on \mathbb{Z}_p .

Let $f(x) = \sum_{n=0}^{\infty} a_{n,q} {x \choose n}_q$ be the Mahler q-expansion of continuous function on \mathbb{Z}_p , where

$$\binom{x}{n}_{q} = \frac{[x]_{q}[x-1]_{q}\cdots[x-n+1]_{q}}{[n]_{q}!}.$$

Then we note that $\lim_{n\to\infty} |a_{n,q}| = 0$. Let

$$f_m(x) = \sum_{i=0}^m a_{i,q} \binom{x}{i}_q \in \mathbb{C}_p[[x]_q].$$

Then

$$\|(f - f_m)_{qw}\|_{\infty} \le \sup_{n \le m} |a_{n,q}|.$$
 (23)

The function f(x) can be rewritten as $f = f_m + f - f_m$. Thus, by (14) and (23), we get

$$\begin{aligned} & \left| \tilde{\mu}_{f,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) - \tilde{\mu}_{f,-q}^{w}(a+p^{n+1}\mathbb{Z}_{p}) \right| \\ & \leq \max\{ \left| \tilde{\mu}_{f_{m},-q}^{w}(a+p^{n}\mathbb{Z}_{p}) - \tilde{\mu}_{f_{m},-q}^{w}(a+p^{n+1}\mathbb{Z}_{p}) \right|, \\ & \left| \tilde{\mu}_{f-f_{m},-q}^{w}(a+p^{n}\mathbb{Z}_{p}) - \tilde{\mu}_{f-f_{m},-q}^{w}(a+p^{n+1}\mathbb{Z}_{p}) \right| \} \end{aligned}$$

$$(24)$$

From Theorem 2.1., we note that

$$\left|\tilde{\mu}_{f-f_m,-q}^w(a+p^n\mathbb{Z}_p)\right|_p \le \|f-f_m\|_{\infty} \le C_1 p^{-2v_p(1-q^{p^n})},\tag{25}$$

where C_1 are positive constants. For $m \gg 0$, we have $||f||_{\infty} = ||f_m||_{\infty}$. So, we see that

$$\begin{aligned} \left| \tilde{\mu}_{f_m,-q}^w(a+p^n \mathbb{Z}_p) - \tilde{\mu}_{f_m,-q}^w(a+p^{n+1} \mathbb{Z}_p) \right|_p \\ &= \left| \frac{f_m([p^n]_q)q^{p^n}}{[p^n]_q^2} \right|_p \left| [p^n]_q^2 \right|_p \le \|f_m q^x w^x\|_\infty \left| [p^n]_q^2 \right|_p \le C_2 p^{-2v_p(1-q^{p^n})}, \end{aligned}$$
(26)

where C_2 is a positive constant.

By (25), we get

$$\begin{aligned} \left| (-1)^{a} q^{a} w^{a} f(a) - \tilde{\mu}_{f,-q}^{w} (a+p^{n} \mathbb{Z}_{p}) \right|_{p} \\ &\leq \max\{ |q^{a}| |w_{a}| |q^{a} w^{a} f(a) - f_{m}(a) q^{a} w^{a} |_{p}, \left| q^{a} w^{a} f_{m}(a) - \tilde{\mu}_{f_{m},-q}^{w} (a+p^{n} \mathbb{Z}_{p}) \right|_{p}, \\ \left| \tilde{\mu}_{f-f_{m},-q}^{w} (a+p^{n} \mathbb{Z}_{p}) \right|_{p} \} \\ &\leq \max\{ |q^{a}| |w_{a}| |f(a) - f_{m}(a) |_{p}, \left| f_{m}(a) - \tilde{\mu}_{f_{m},-q}^{w} (a+p^{n} \mathbb{Z}_{p}) \right|_{p}, \| (f-f_{m})_{qw} \|_{\infty} \} \end{aligned}$$

$$(27)$$

Let us assume that fix $\epsilon > 0$, and fix m such that $||f - f_m|| < \epsilon$. Then we have

$$\left| (-q)^a w^a f(a) - \tilde{\mu}^w_{f,-q} (a + p^n \mathbb{Z}_p) \right|_p \le \epsilon \quad \text{for} \quad n \gg 0.$$
⁽²⁸⁾

Thus, by (28), we have

$$f_{\tilde{\mu}_{f,-q}^{w}}(a) = \lim_{n \to \infty} \tilde{\mu}_{f,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = (-1)^{a}q^{a}w^{a}f(a).$$
(29)

Let m be the sufficiently large number such that $||f - f_m||_{\infty} \leq p^{-n}$. Then we get

$$\tilde{\mu}_{f,-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = \tilde{\mu}_{f_{m},-q}^{w}(a+p^{n}\mathbb{Z}_{p}) + \tilde{\mu}_{f-f_{m},-q}^{w}(a+p^{n}\mathbb{Z}_{p}) = (-1)^{a}q^{a}w^{a}f(a) \pmod{[p^{n}]_{q}^{2}}.$$

For $g \in UD(\mathbb{Z}_p)$, we have

$$\int_{\mathbb{Z}_p} g(x) d\tilde{\mu}^w_{f,-q}(x) = \int_{\mathbb{Z}_p} f(x) g(x) \frac{[2]_q}{1+w} q^x w^x d\mu_{-1}(x).$$

Let f be the function from $UD(\mathbb{Z}_p)$ to $Lip(\mathbb{Z}_p)$. We easily see that $w^x q^x \mu_{-1}(x + p^n \mathbb{Z}_p)$ is a strongly weighted and twisted p-adic invariant measure on \mathbb{Z}_p and

$$\left| (f_{qw})_{\mu_{-1}}(a) - w^a q^a \mu_{-1}(a + p^n \mathbb{Z}_p) \right|_p \le C_3 p^{-2v_p(1 - q^{p^n})},$$

where $f_{qw}(x) = q^x w^x f(x)$ and C_3 is positive constant and $n \in \mathbb{Z}_+$.

If $\mu_{1,-q}^w$ is associated with strongly weighted and twisted fermionic invariant measure on \mathbb{Z}_p , then we have

$$\tilde{\mu}_{1,-q}^w(a+p^n\mathbb{Z}_p) - (f_{qw})_{\mu_{-1}}(a)\Big|_p \le C_4 p^{-2v_p(1-q^{p''})},$$

where n > 0 and C_4 is positive constant.

For $n \gg 0$, we have

$$\begin{aligned} \left| q^{a} w^{a} \mu_{-1}(a+p^{n} \mathbb{Z}_{p}) - \tilde{\mu}_{1,-q}^{w}(a+p^{n} \mathbb{Z}_{p}) \right|_{p} \\ &\leq \left| q^{a} w^{a} \mu_{-1}(a+p^{n} \mathbb{Z}_{p}) - (f_{qw})_{\mu_{-1}^{w}}(a) \right|_{p} + \left| (f_{qw})_{\mu_{-1}}(a) - \tilde{\mu}_{1,-q}^{w}(a+p^{n} \mathbb{Z}_{p}) \right|_{p} \leq K, \end{aligned}$$

$$(30)$$

where K is positive constant.

Hence, $wq\mu_{-1} - \tilde{\mu}_{1,-q}^w$ is a weighted and twisted measure on \mathbb{Z}_p . Therefore, we obtain the following theorem.

Theorem 2.2. Let $wq\mu_{-1}$ be a strongly weighted and twisted *p*-adic invariant measure on \mathbb{Z}_p , and assume that the fermionic weighted and twisted Radon–Nikodym derivative $(f_{qw})_{\mu_{-1}}$ on \mathbb{Z}_p is uniformly differentiable function. Suppose that $\tilde{\mu}_{1,-q}^w$ is the strongly weighted and twisted fermionic *p*-adic invariant measure associated with $(f_{qw})_{\mu_{-1}}$. Then there exists a weighted and twisted measure $\tilde{\mu}_{2,-q}^w$ on \mathbb{Z}_p such that

$$w^{x}q^{x}\mu_{-1}(x+p^{n}\mathbb{Z}_{p}) = \tilde{\mu}^{w}_{1,-q}(x+p^{n}\mathbb{Z}_{p}) + \tilde{\mu}^{w}_{2,-q}(x+p^{n}\mathbb{Z}_{p}).$$

3 Conclusion

The Theorem 2.2. is the version of the Lebesgue–Radon–Nikodym theorem with respect to weighted and twisted *p*-adic *q*-measure on \mathbb{Z}_p . In special case, if there is no twisted, then we can derive the same result as Jeong and Rim, 2012 (see [5]). In the case of weight zero and no twisted, then we derive the same result as Kim, 2012 (see [7]).

References

- [1] Bayad, A. & T. Kim. (2011) Identities involving values of Bernstein, *q*-Bernoulli, and *q*-Euler polynomials. *Russ. J. Math. Phys.*, 18(2), 133–143.
- [2] Calabuig, J. M., P. Gregori & E. A Sanchez Perez. (2008) Radon–Nikodym derivative for vector measures belonging to Kothe function space. J. Math. Anal. Appl. 348, 469–479.
- [3] Choi, J., T. Kim & Y. H. Kim. (2011) A note on the *q*-analogues of Euler numbers and polynomials, *Honam Mathematical Journal*, 33(4), 529–534.
- [4] George, K. (2008) On the Radon–Nikodym theorem, Amer. Math. Monthly, 115, 556–558.

- [5] Jeong, J. & S. H. Rim. (2012) A note on the Lebesgue–Radon–Nikodym theorem with respect to weighted *p*-adic invariant integral on \mathbb{Z}_p , *Abstract and Applied Analysis*, 2012, Article ID 696720, 8 pages.
- [6] Kim, T. (2002) q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288–299.
- [7] Kim, T. (2012) Lebesgue–Radon–Nikodym theorem with respect to fermionic *p*-adic invariant measure on \mathbb{Z}_p , *Russ. J. Math. Phys.* 19, 193–196.
- [8] Kim, T. (2007) Lebesgue–Radon–Nikodym theorem with respect to fermionic q-Volkenborn distribution on μ_q . *Appl. Math. Comp.*, 187, 266–271.
- [9] Kim, T. (2011) A note on q-Bernstein polynomials. *Russ. J. Math. Phys.* 18(1), 73–82.
- [10] Kim, T. (2008) Note on the Euler numbers and polynomials. *Adv. Stud. Contemp. Math.*, 17, 131–156.
- [11] Kim, T. (2009) Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_p . Russ. J. Math. Phys. 16, 484–491.
- [12] Kim, T. (2010) New approach to q-Euler polynimials of higher order. *Russ. J. Math. Phys.* 17, 218–225.
- [13] Kim, T., J. Choi & H. Kim A note on the weighted Lebesgue–Radon–Nikodym theorem with respect to *p*-adic invariant integral on \mathbb{Z}_p . to appear in JAMI.
- [14] Kim, T., D. V. Dolgy, S. H. Lee & C. S. Ryoo. (2011) Analogue of Lebesgue–Radon– Nikodym theorem with respect to *p*-adic *q*-measure on \mathbb{Z}_p . *Abstract and Applied Analysis*, 2011, Article ID637634, 6 pages.
- [15] Kim, T., S. D. Kim, & D. W. Park. (2001) On Uniformly differntiabitity and q-Mahler expansion. *Adv. Stud. Contemp. Math.*, 4, 35–41.
- [16] Kim, Y. H., B. Lee & T. Kim. (2011) On the *q*-extension of the twisted generalized Euler numbers and polynomials attached to χ . J. of Comp. Anal. and Appl., 13(7), 1208–1213.
- [17] Jeong, J. & S. H. Rim. (2012) A note on the Lebesgue–Radon–Nikodym theorem with respect to weighted *p*-adic invariant integral on \mathbb{Z}_p . Abstract and Applied Analysis, 2012, Article ID 696720, 8 pages.