A note on the greatest common divisor

Rafael Jakimczuk
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 20, 2014, Number 4, Pages 77–80
Full paper (PDF, 150 Kb)

Details

Authors and affiliations

Rafael Jakimczuk
División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina

Abstract

Let k ≥ 2 a fixed positive integer. Let P(n) be the greatest prime factor of a positive integer n ≥ 2. Let Fk(n) be the number of 2 ≤ sn such that P(s) > s/k. We prove the following asymptotic formula
F_k(n)\sim C_k \frac{n}{\log n},
where Ck is a constant defined in this article.

Keywords

  • Greatest prime factor
  • Distribution

AMS Classification

  • 11A99
  • 11B99

References

  1. Jakimczuk, R., A note on the primes in the prime factorization of an integer, International Mathematical Forum, Vol. 7, 2012, 2005–2012.

Related papers

Cite this paper

Jakimczuk, R. (2014). A note on the greatest common divisor. Notes on Number Theory and Discrete Mathematics, 20(4), 77-80.

Comments are closed.