A note on the greatest prime factor

Rafael Jakimczuk
División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina
e-mail: jakimczu@mail.unlu.edu.ar

Abstract

Let $k \geq 2$ a fixed positive integer. Let $P(n)$ be the greatest prime factor of a positive integer $n \geq 2$. Let $F_{k}(n)$ be the number of $2 \leq s \leq n$ such that $P(s)>\frac{s}{k}$. We prove the following asymptotic formula

$$
F_{k}(n) \sim C_{k} \frac{n}{\log n},
$$

where C_{k} is a constant defined in this article.
Keywords: Greatest prime factor, Distribution.
AMS Classification: 11A99, 11B99.

1 Notation and Preliminary results

Let $P(n)$ be the greatest prime factor of a positive integer $n \geq 2$. Note that if n is prime then $P(n)=n$. Therefore $2 \leq P(n) \leq n$ for all $n \geq 2$.

Let $k \geq 2$ a fixed positive integer. Let $F_{k}(n)$ be the number of $2 \leq s \leq n$ such that $P(s)>\frac{s}{k}$.
In this article we prove the following asymptotic formula

$$
F_{k}(n) \sim C_{k} \frac{n}{\log n},
$$

where C_{k} is a constant defined below.
Let $\beta_{k}(x)$ be the set of positive integers not exceeding x such that in their prime factorization appear some prime p pertaining to the interval $\left(\frac{x}{k}, x\right]$. That is, $\beta_{k}(x)$ is the set of positive integers not exceeding x such that the greatest prime factor of these positive integers pertain to the interval $\left(\frac{x}{k}, x\right]$.

The number of positive integers pertaining to the set $\beta_{k}(x)$ we denote $B_{k}(x)$. It is well-known [1] the following formula

$$
\begin{equation*}
B_{k}(x)=B_{k} \frac{x}{\log x}+o\left(\frac{x}{\log x}\right), \tag{1}
\end{equation*}
$$

where the constant $B_{k}=1 / 2+1 / 3+\cdots+1 / k$.
Let $\alpha_{k}(x)$ be the set of positive integers not exceeding x such that in their prime factorization only appear primes p pertaining to the interval $\left[0, \frac{x}{k}\right]$. That is, $\alpha_{k}(x)$ is the set of positive integers not exceeding x such that the greatest prime factor of these positive integers pertain to the interval $\left[0, \frac{x}{k}\right]$. We assume that 1 pertains to the set $\alpha_{k}(x)$. These numbers are called smooth numbers. The number of positive integers pertaining to the set $\alpha_{k}(x)$ we denote $A_{k}(x)$.

Note that the sets $\beta_{k}(x)$ and $\alpha_{k}(x)$ are disjoints and $\beta_{k}(x) \cup \alpha_{k}(x)=A$, where A is the set of positive integers s such that $1 \leq s \leq\lfloor x\rfloor$. Consequently $A_{k}(x)+B_{k}(x)=\lfloor x\rfloor$ and hence we have (see (1))

$$
A_{k}(x)=x-B_{k} \frac{x}{\log x}+o\left(\frac{x}{\log x}\right) .
$$

Let us consider a prime p such that $2 \leq p \leq n$. The set of multiples of p not exceeding n will be denoted $A(n, p)$. Therefore

$$
\begin{equation*}
A(n, p)=\left\{p .1, p .2, p .3, \ldots, p \cdot\left\lfloor\frac{n}{p}\right\rfloor\right\} \tag{2}
\end{equation*}
$$

Let $B_{1}(n, p)$ be the set of positive integers not exceeding n such that the prime p is their greatest prime factor. We denote $B_{2}(n, p)$ the number of elements in the set $B_{1}(n, p)$. Note that $B_{1}(n, p) \subset$ $A(n, p)$. Then

$$
\begin{gather*}
\sum_{2 \leq p \leq n} B_{2}(n, p)=n-1 \\
A_{k}(n)=1+\sum_{2 \leq p \leq \frac{n}{k}} B_{2}(n, p) \\
B_{k}(n)=\sum_{\frac{n}{k}<p \leq n} B_{2}(n, p) \tag{3}
\end{gather*}
$$

The set of elements $s \in A(n, p)$ such that $p>\frac{s}{k}$ we denote $C_{1}(n, p)$. The number of elements in the set $C_{1}(n, p)$ we denote $C_{2}(n, p)$. Clearly $C_{1}(n, p) \subset A(n, p)$.

Let $\pi(x)$ be the prime counting function. We have (prime number Theorem)

$$
\begin{equation*}
\pi(x) \sim \frac{x}{\log x} \tag{4}
\end{equation*}
$$

2 Main result

Theorem 2.1. Let $k \geq 2$ a fixed positive integer. We have the following asymptotic formula

$$
\begin{equation*}
F_{k}(n) \sim C_{k} \frac{n}{\log n} \tag{5}
\end{equation*}
$$

where the constant $C_{k}=1+\frac{1}{2}+\cdots+\frac{1}{k-1}$.

Proof: We have

$$
\begin{align*}
F_{k}(n) & =\sum_{2 \leq p \leq n}\left(\sum_{s \in B_{1}(n, p) \cap C_{1}(n, p)} 1\right)=\sum_{2 \leq p \leq \frac{n}{k}}\left(\sum_{s \in B_{1}(n, p) \cap C_{1}(n, p)} 1\right) \\
& +\sum_{\frac{n}{k}<p \leq n}\left(\sum_{s \in B_{1}(n, p) \cap C_{1}(n, p)} 1\right) \tag{6}
\end{align*}
$$

Let us consider a prime p fixed such that $\frac{n}{k}<p \leq n$.
If $s \in A(n, p)$ then we have $p>\frac{n}{k} \geq \frac{s}{k}$. That is, $p>\frac{s}{k}$. Therefore $C_{1}(n, p)=A(n, p)$. Consequently (see (3) and (1))

$$
\begin{align*}
& \sum_{\frac{n}{k}<p \leq n}\left(\sum_{s \in B_{1}(n, p) \cap C_{1}(n, p)} 1\right)=\sum_{\frac{n}{k}<p \leq n}\left(\sum_{s \in B_{1}(n, p) \cap A(n, p)} 1\right) \\
= & \sum_{\frac{n}{k}<p \leq n}\left(\sum_{s \in B_{1}(n, p)} 1\right)=\sum_{\frac{n}{k}<p \leq n} B_{2}(n, p)=B_{k}(n) \\
= & B_{k} \frac{n}{\log n}+o\left(\frac{n}{\log n}\right) \tag{7}
\end{align*}
$$

Let us consider a prime p fixed such that $2 \leq p \leq \frac{n}{k}$. Note that this inequality implies that

$$
\begin{equation*}
\left\lfloor\frac{n}{p}\right\rfloor \geq k \tag{8}
\end{equation*}
$$

Now, let us consider the inequality (where h is a positive integer)

$$
\frac{s}{k}=\frac{p \cdot h}{k}<p
$$

This inequality has the solutions

$$
h=1,2, \ldots, k-1
$$

Therefore (see (8))

$$
C_{1}(n, p)=\{p .1, p .2, \ldots, p(k-1)\}
$$

and

$$
\begin{equation*}
C_{2}(n, p)=k-1 \tag{9}
\end{equation*}
$$

Suppose that $k+1 \leq p \leq \frac{n}{k}$. Then p is the greatest prime factor of the elements in the set $C_{1}(n, p)$. Consequently

$$
\begin{equation*}
B_{1}(n, p) \cap C_{1}(n, p)=C_{1}(n, p) \tag{10}
\end{equation*}
$$

On the other hand, if $2 \leq p \leq k$ then the number of elements in $B_{1}(n, p) \cap C_{1}(n, p)$ is less than or equal to $k-1$.

Therefore, we have (see (10), (9) and (4))

$$
\begin{aligned}
& N+\sum_{k+1 \leq p \leq \frac{n}{k}}\left(\sum_{s \in B_{1}(n, p) \cap C_{1}(n, p)} 1\right)=N+\sum_{k+1 \leq p \leq \frac{n}{k}}\left(\sum_{s \in C_{1}(n, p)} 1\right) \\
= & N+\sum_{k+1 \leq p \leq \frac{n}{k}} C_{2}(n, p)=N+(k-1) \sum_{k+1 \leq p \leq \frac{n}{k}} 1 \\
= & N+(k-1)\left(\pi\left(\frac{n}{k}\right)-\pi(k)\right) \sim \frac{k-1}{k} \frac{n}{\log n}
\end{aligned}
$$

where $N=\sum_{2 \leq p \leq k}\left(\sum_{s \in B_{1}(n, p) \cap C_{1}(n, p)} 1\right)$.
That is

$$
\begin{equation*}
\sum_{2 \leq p \leq \frac{n}{k}}\left(\sum_{s \in B_{1}(n, p) \cap C_{1}(n, p)} 1\right)=\left(1-\frac{1}{k}\right) \frac{n}{\log n}+o\left(\frac{n}{\log n}\right) \tag{11}
\end{equation*}
$$

Equations (6), (7) and (11) give (5). The theorem is proved.

Acknowledgements

The author is very grateful to Universidad Nacional de Luján.

References

[1] Jakimczuk, R., A note on the primes in the prime factorization of an integer, International Mathematical Forum, Vol. 7, 2012, 2005-2012.

