A note on the greatest prime factor

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina e-mail: jakimczu@mail.unlu.edu.ar

Abstract: Let $k \ge 2$ a fixed positive integer. Let P(n) be the greatest prime factor of a positive integer $n \ge 2$. Let $F_k(n)$ be the number of $2 \le s \le n$ such that $P(s) > \frac{s}{k}$. We prove the following asymptotic formula

$$F_k(n) \sim C_k \frac{n}{\log n},$$

where C_k is a constant defined in this article. **Keywords:** Greatest prime factor, Distribution. **AMS Classification:** 11A99, 11B99.

1 Notation and Preliminary results

Let P(n) be the greatest prime factor of a positive integer $n \ge 2$. Note that if n is prime then P(n) = n. Therefore $2 \le P(n) \le n$ for all $n \ge 2$.

Let $k \ge 2$ a fixed positive integer. Let $F_k(n)$ be the number of $2 \le s \le n$ such that $P(s) > \frac{s}{k}$. In this article we prove the following asymptotic formula

$$F_k(n) \sim C_k \frac{n}{\log n},$$

where C_k is a constant defined below.

Let $\beta_k(x)$ be the set of positive integers not exceeding x such that in their prime factorization appear some prime p pertaining to the interval $\left(\frac{x}{k}, x\right]$. That is, $\beta_k(x)$ is the set of positive integers not exceeding x such that the greatest prime factor of these positive integers pertain to the interval $\left(\frac{x}{k}, x\right]$.

The number of positive integers pertaining to the set $\beta_k(x)$ we denote $B_k(x)$. It is well-known [1] the following formula

$$B_k(x) = B_k \frac{x}{\log x} + o\left(\frac{x}{\log x}\right),\tag{1}$$

where the constant $B_k = 1/2 + 1/3 + \cdots + 1/k$.

Let $\alpha_k(x)$ be the set of positive integers not exceeding x such that in their prime factorization only appear primes p pertaining to the interval $\left[0, \frac{x}{k}\right]$. That is, $\alpha_k(x)$ is the set of positive integers not exceeding x such that the greatest prime factor of these positive integers pertain to the interval $\left[0, \frac{x}{k}\right]$. We assume that 1 pertains to the set $\alpha_k(x)$. These numbers are called smooth numbers. The number of positive integers pertaining to the set $\alpha_k(x)$ we denote $A_k(x)$.

Note that the sets $\beta_k(x)$ and $\alpha_k(x)$ are disjoints and $\beta_k(x) \cup \alpha_k(x) = A$, where A is the set of positive integers s such that $1 \le s \le \lfloor x \rfloor$. Consequently $A_k(x) + B_k(x) = \lfloor x \rfloor$ and hence we have (see (1))

$$A_k(x) = x - B_k \frac{x}{\log x} + o\left(\frac{x}{\log x}\right).$$

Let us consider a prime p such that $2 \le p \le n$. The set of multiples of p not exceeding n will be denoted A(n, p). Therefore

$$A(n,p) = \left\{ p.1, p.2, p.3, \dots, p. \left\lfloor \frac{n}{p} \right\rfloor \right\}$$
(2)

Let $B_1(n, p)$ be the set of positive integers not exceeding n such that the prime p is their greatest prime factor. We denote $B_2(n, p)$ the number of elements in the set $B_1(n, p)$. Note that $B_1(n, p) \subset A(n, p)$. Then

$$\sum_{2 \le p \le n} B_2(n, p) = n - 1$$

$$A_k(n) = 1 + \sum_{2 \le p \le \frac{n}{k}} B_2(n, p)$$

$$B_k(n) = \sum_{\frac{n}{k}
(3)$$

The set of elements $s \in A(n, p)$ such that $p > \frac{s}{k}$ we denote $C_1(n, p)$. The number of elements in the set $C_1(n, p)$ we denote $C_2(n, p)$. Clearly $C_1(n, p) \subset A(n, p)$.

Let $\pi(x)$ be the prime counting function. We have (prime number Theorem)

$$\pi(x) \sim \frac{x}{\log x}.\tag{4}$$

2 Main result

Theorem 2.1. Let $k \ge 2$ a fixed positive integer. We have the following asymptotic formula

$$F_k(n) \sim C_k \frac{n}{\log n},\tag{5}$$

where the constant $C_k = 1 + \frac{1}{2} + \dots + \frac{1}{k-1}$.

Proof: We have

$$F_{k}(n) = \sum_{2 \le p \le n} \left(\sum_{s \in B_{1}(n,p) \cap C_{1}(n,p)} 1 \right) = \sum_{2 \le p \le \frac{n}{k}} \left(\sum_{s \in B_{1}(n,p) \cap C_{1}(n,p)} 1 \right) + \sum_{\frac{n}{k} (6)$$

Let us consider a prime p fixed such that $\frac{n}{k} .$

If $s \in A(n,p)$ then we have $p > \frac{n}{k} \ge \frac{s}{k}$. That is, $p > \frac{s}{k}$. Therefore $C_1(n,p) = A(n,p)$. Consequently (see (3) and (1))

$$\sum_{\substack{\frac{n}{k}
$$= \sum_{\substack{\frac{n}{k}
$$= B_k \frac{n}{\log n} + o\left(\frac{n}{\log n}\right)$$
(7)$$$$

Let us consider a prime p fixed such that $2 \le p \le \frac{n}{k}$. Note that this inequality implies that

$$\left\lfloor \frac{n}{p} \right\rfloor \ge k \tag{8}$$

Now, let us consider the inequality (where h is a positive integer)

$$\frac{s}{k} = \frac{p.h}{k} < p$$

This inequality has the solutions

$$h=1,2,\ldots,k-1$$

Therefore (see (8))

$$C_1(n,p) = \{p.1, p.2, \dots, p(k-1)\}$$

and

$$C_2(n,p) = k - 1$$
(9)

Suppose that $k + 1 \le p \le \frac{n}{k}$. Then p is the greatest prime factor of the elements in the set $C_1(n, p)$. Consequently

$$B_1(n,p) \cap C_1(n,p) = C_1(n,p)$$
(10)

On the other hand, if $2 \le p \le k$ then the number of elements in $B_1(n,p) \cap C_1(n,p)$ is less than or equal to k-1.

Therefore, we have (see (10), (9) and (4))

$$N + \sum_{k+1 \le p \le \frac{n}{k}} \left(\sum_{s \in B_1(n,p) \cap C_1(n,p)} 1 \right) = N + \sum_{k+1 \le p \le \frac{n}{k}} \left(\sum_{s \in C_1(n,p)} 1 \right)$$
$$= N + \sum_{k+1 \le p \le \frac{n}{k}} C_2(n,p) = N + (k-1) \sum_{k+1 \le p \le \frac{n}{k}} 1$$
$$= N + (k-1) \left(\pi \left(\frac{n}{k} \right) - \pi(k) \right) \sim \frac{k-1}{k} \frac{n}{\log n}$$
where $N = \sum_{2 \le p \le k} \left(\sum_{s \in B_1(n,p) \cap C_1(n,p)} 1 \right)$.
That is
$$\sum_{2 \le p \le \frac{n}{k}} \left(\sum_{s \in B_1(n,p) \cap C_1(n,p)} 1 \right) = \left(1 - \frac{1}{k} \right) \frac{n}{\log n} + o \left(\frac{n}{\log n} \right)$$
(11)Equations (6), (7) and (11) give (5). The theorem is proved.

Equations (6), (7) and (11) give (5). The theorem is proved.

Acknowledgements

The author is very grateful to Universidad Nacional de Luján.

References

[1] Jakimczuk, R., A note on the primes in the prime factorization of an integer, International Mathematical Forum, Vol. 7, 2012, 2005–2012.