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A note on the greatest prime factor
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Abstract: Let k ≥ 2 a fixed positive integer. Let P (n) be the greatest prime factor of a positive
integer n ≥ 2. Let Fk(n) be the number of 2 ≤ s ≤ n such that P (s) > s

k
. We prove the

following asymptotic formula

Fk(n) ∼ Ck
n

log n
,

where Ck is a constant defined in this article.
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1 Notation and Preliminary results

Let P (n) be the greatest prime factor of a positive integer n ≥ 2. Note that if n is prime then
P (n) = n. Therefore 2 ≤ P (n) ≤ n for all n ≥ 2.

Let k ≥ 2 a fixed positive integer. Let Fk(n) be the number of 2 ≤ s ≤ n such that P (s) > s
k
.

In this article we prove the following asymptotic formula

Fk(n) ∼ Ck
n

log n
,

where Ck is a constant defined below.
Let βk(x) be the set of positive integers not exceeding x such that in their prime factorization

appear some prime p pertaining to the interval
(
x
k
, x
]
. That is, βk(x) is the set of positive integers

not exceeding x such that the greatest prime factor of these positive integers pertain to the interval(
x
k
, x
]
.

The number of positive integers pertaining to the set βk(x) we denoteBk(x). It is well-known
[1] the following formula
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Bk(x) = Bk
x

log x
+ o

(
x

log x

)
, (1)

where the constant Bk = 1/2 + 1/3 + · · ·+ 1/k.
Let αk(x) be the set of positive integers not exceeding x such that in their prime factorization

only appear primes p pertaining to the interval
[
0, x

k

]
. That is, αk(x) is the set of positive integers

not exceeding x such that the greatest prime factor of these positive integers pertain to the interval[
0, x

k

]
. We assume that 1 pertains to the set αk(x). These numbers are called smooth numbers.

The number of positive integers pertaining to the set αk(x) we denote Ak(x).
Note that the sets βk(x) and αk(x) are disjoints and βk(x) ∪ αk(x) = A, where A is the set

of positive integers s such that 1 ≤ s ≤ bxc. Consequently Ak(x) + Bk(x) = bxc and hence we
have (see (1))

Ak(x) = x−Bk
x

log x
+ o

(
x

log x

)
.

Let us consider a prime p such that 2 ≤ p ≤ n. The set of multiples of p not exceeding n will
be denoted A(n, p). Therefore

A(n, p) =

{
p.1, p.2, p.3, . . . , p.

⌊
n

p

⌋}
(2)

Let B1(n, p) be the set of positive integers not exceeding n such that the prime p is their greatest
prime factor. We denoteB2(n, p) the number of elements in the setB1(n, p). Note thatB1(n, p) ⊂
A(n, p). Then ∑

2≤p≤n

B2(n, p) = n− 1

Ak(n) = 1 +
∑

2≤p≤n
k

B2(n, p)

Bk(n) =
∑

n
k
<p≤n

B2(n, p) (3)

The set of elements s ∈ A(n, p) such that p > s
k

we denote C1(n, p). The number of elements in
the set C1(n, p) we denote C2(n, p). Clearly C1(n, p) ⊂ A(n, p).

Let π(x) be the prime counting function. We have (prime number Theorem)

π(x) ∼ x

log x
. (4)

2 Main result

Theorem 2.1. Let k ≥ 2 a fixed positive integer. We have the following asymptotic formula

Fk(n) ∼ Ck
n

log n
, (5)

where the constant Ck = 1 + 1
2
+ · · ·+ 1

k−1 .
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Proof: We have

Fk(n) =
∑

2≤p≤n

 ∑
s∈B1(n,p)∩C1(n,p)

1

 =
∑

2≤p≤n
k

 ∑
s∈B1(n,p)∩C1(n,p)

1


+

∑
n
k
<p≤n

 ∑
s∈B1(n,p)∩C1(n,p)

1

 (6)

Let us consider a prime p fixed such that n
k
< p ≤ n.

If s ∈ A(n, p) then we have p > n
k
≥ s

k
. That is, p > s

k
. Therefore C1(n, p) = A(n, p).

Consequently (see (3) and (1))

∑
n
k
<p≤n

 ∑
s∈B1(n,p)∩C1(n,p)

1

 =
∑

n
k
<p≤n

 ∑
s∈B1(n,p)∩A(n,p)

1


=

∑
n
k
<p≤n

 ∑
s∈B1(n,p)

1

 =
∑

n
k
<p≤n

B2(n, p) = Bk(n)

= Bk
n

log n
+ o

(
n

log n

)
(7)

Let us consider a prime p fixed such that 2 ≤ p ≤ n
k

. Note that this inequality implies that⌊
n

p

⌋
≥ k (8)

Now, let us consider the inequality (where h is a positive integer)

s

k
=
p.h

k
< p

This inequality has the solutions

h = 1, 2, . . . , k − 1

Therefore (see (8))
C1(n, p) = {p.1, p.2, . . . , p(k − 1)}

and
C2(n, p) = k − 1 (9)

Suppose that k + 1 ≤ p ≤ n
k

. Then p is the greatest prime factor of the elements in the set
C1(n, p). Consequently

B1(n, p) ∩ C1(n, p) = C1(n, p) (10)

On the other hand, if 2 ≤ p ≤ k then the number of elements in B1(n, p) ∩ C1(n, p) is less
than or equal to k − 1.
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Therefore, we have (see (10), (9) and (4))

N +
∑

k+1≤p≤n
k

 ∑
s∈B1(n,p)∩C1(n,p)

1

 = N +
∑

k+1≤p≤n
k

 ∑
s∈C1(n,p)

1


= N +

∑
k+1≤p≤n

k

C2(n, p) = N + (k − 1)
∑

k+1≤p≤n
k

1

= N + (k − 1)
(
π
(n
k

)
− π(k)

)
∼ k − 1

k

n

log n

where N =
∑

2≤p≤k

(∑
s∈B1(n,p)∩C1(n,p)

1
)

.
That is ∑

2≤p≤n
k

 ∑
s∈B1(n,p)∩C1(n,p)

1

 =

(
1− 1

k

)
n

log n
+ o

(
n

log n

)
(11)

Equations (6), (7) and (11) give (5). The theorem is proved. �
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