József Sándor

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 20, 2014, Number 2, Pages 52—60

**Download full paper: PDF, 162 Kb**

## Details

### Authors and affiliations

József Sándor

*Babeș-Bolyai University, Department of Mathematics
Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania*

### Abstract

Some new inequalities for the arithmetic functions of the title are considered. Among others we offer a refinement of a recent arithmetic inequality by K. T. Atanassov [1].

### Keywords

- Arithmetic functions
- Inequalities for arithmetic functions
- Inequalities of Weierstrass type

### AMS Classification

- 11A25
- 26D99

### References

- Atanassov, K. T. Note on φ, ψ and σ-functions. Part 6. Notes Numb. Th. Discr. Math., Vol. 19, 2013, No. 1, 22–24.
- Sándor, J., L. Tóth. On certain number-theoretic inequalities. Fib. Quart., Vol. 28, 1990, 255–258.
- Sándor, J., D. S. Mitrinović, B. Crstici, Handbook of number theory I, Springer Verlag, 2006 (first edition by Kluwer, 1995).
- Sándor, J. On certain inequalities for arithmetic functions. Notes Numb. Theor. Discr. Math., Vol. 1, 1995, No. 1, 27–32.
- Sándor, J. On inequalities and . Octogon Math. Mag., Vol. 16, 2008, No. 1, 276–278.
- Sándor, J. On the inequality . Octogon Math. Mag., Vol. 16, 2008, No. 1, 295–296.

## Related papers

- Atanassov, K. T. Note on φ, ψ and σ-functions. Part 6. NNTDM, Vol. 19, 2013, No. 1, 22–24.

## Cite this paper

APASándor, J. (2014). On certain inequalities for σ, φ, ψ and related functions. Notes on Number Theory and Discrete Mathematics, 20(2), 52-60.

ChicagoSándor, József. “On certain inequalities for σ, φ, ψ and related functions.” Notes on Number Theory and Discrete Mathematics 20, no. 2 (2014): 52-60

MLASándor, József. “On certain inequalities for σ, φ, ψ and related functions.” Notes on Number Theory and Discrete Mathematics 20.2 (2014): 52-60. Print.