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1 Introduction

Let ¢(n), ¥(n) and o(n) denote the classical arithmetic functions, representing Euler’s totient,
Dedekind’s function, and the sum of divisors function respectively.

It is well-known that these functions are multiplicative, and for prime powers n = p* (p prime,
a > 1 integer) one has

a a 1 a a 1 N
e(p") =p (1 p>, (p*) =p (Hp), o(p®) = 1 (1)

We have also by definition p(1) = ¢(1) = o(1) = 1.

In what follows, we shall need also the unitary analogues of the functions ¢ and o; namely
the arithmetical functions ¢*(n) and o*(n) (connected with the “unitary divisors” of n; see e.g.
[2, 3] for many properties and references).

These functions are also multiplicative, and for prime powers they take the values

e (p")=p" -1, o (p*)=p"+1 (2)
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In a recent paper [1], K. T. Atanassov proved the following interesting inequality:

Theorem 1. For all integers n > 1 we have the inequality

p(n)y(n)o(n) > (n—1)(n+1)% (3)

Remark 1. It is well-known that, ¢(n) <n — 1foralln > 2and ¢)(n) > n+1,0(n) > n+ 1.
So relation (3) is not a consequence of known inequalities. For n = p = prime there is equality.

In what follows, we shall prove the following refinement of (3) (so a new proof of (3) will be
given, too):

Theorem 2. For all n > 1 one has the inequalities

p(n)y(n)a(n) > ¢"(n)(c*(n))* > (n — 1)(n + 1)% (4)

There is equality in the first relation of (4) only when n is squarefree, or n = 1, while in the

second one only when n is a prime power.

2 Proof of main result

For the first term of inequality (4), remark that both members are multiplicative functions. So,
T

if n = H p;* is the prime factorization of n > 1, it will be sufficient to prove the inequality
=1
for a prime power p;*. Then, the general result follows by a term-by-term multiplication of these

inequality. Let for simplicity denote p® = p;*. Then we have to prove the relation (by using (1)
and (2)):
P+ DT - 1) = (0" - D"+ 1)% (5)

After elementary transformations, (5) may be written also as:
p3a—1 _I_pa +1 Z p2a +p2a—1 +p2a—2' (6)

We shall prove this inequality by induction upon @ > 1. For a = 1, the relation is true (in fact,
there is equality in (6)). Assuming (6) for a, let us try to prove it for a + 1. By multiplying both
sides of (6) by p?, we get

p3a+1 _|_pa+2 +p2 Z p2a+2 +p2a+1 +p2a _ A,

and remark that A is in fact the right side of (6) for a := a + 1. Therefore, it will be sufficient to
prove that the left side of (6) for a := a + 1 satisfies:

p3a+2 +pa+1 4 1 Z p3a+1 +pa+2 +p2. (7)
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This may be written also as
P -1 = p(p—-1)+p* -1,

i.e.
Pt >t 4 p 1 (8)

Now, inequality (8) is trivial, since equivalently states that
pa+1<p2a _ 1) Z p+ 1’

and the left sides contains also

pPr—1=0p"+D)p-1)=@+)p-1)>p+1

(the inequality is in fact strict).

Remark. The above proof shows in fact that, the inequality (6) is strict for @ > 1. Thus one has
equality in (5) only for @ = 1, and this implies that there is equality for n > 1 in left side of (4)
only when n is a product of distinct primes, i.e. n = squarefree.

Now, the second inequality of (3), when

n:ﬁp;”:ﬁ:ci>1
i=1 i=1

can be rewritten as:
(x1 —1) ... (2, — 1) (2 +1)2...(xr+ 1)2 > (1. .2 — 1)(x1...xr+1)2, 9)

where 7 > 1 and z; = p;. Clearly, there is equality in (9) for r = 1 (i.e., when n is a prime
power); we shall prove that for » > 1 there is strict inequality.

First we prove the inequality for » = 2. The general case — via mathematical induction —
will be reduced essentially to this case. Put for simplicity z; = z, x5 = y when the inequality
becomes

(z = Dz +1)*y — Dy +1)* > (zy — 1) (zy + 1)* (10)

Here x > 2 and y > 3 (as p1 > 2, po > 3 are distinct primes).
As (z —1)(x +1)> = 23 + 22 — 2 — 1, etc.; (10) may be written also as

(P2~ - 1)+ —y—1)> 2% + 2%y —ay — 1,

or
PP -y -+ -y - >+ -2y -+ +y -y —2.  (11)
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Write this as

p(’ —y—-1) -+ -2y - D]+ 22—y -1 >y’ +y" —y—2.

Here
e’ —y—-D -+ -2 -1 =20 —y—-1) -’ +y" -2y — 1)
=P 9> —1>0
by & > 2. Thus, the left side of (12) is

>2 -y - D) +8(P —y—1) >y +y -y -2,

as this is
P45y — Ty — 8> 0.

Now,
y(y? +5y —7) >3(9+15—-7) =51 > 8,

and this proves (12), i.e. (10).
Now, assuming (9) for r > 1, let us try to prove it for r + 1; i.e.

(z1—1) ... (2, — Dz — Dz + 12 (2 + D (g + 1)?

> (21 .. 2Ty — 1)(21 .. 22y + 1)7

By multiplying both sides of (9) with (2,4, — 1)(z,,1 + 1)?, it is sufficient to prove that

(z1...xp = )(21.. .2 + D (21 — D) (wq +1)°

> (21, .. 2.8 — V(1. . 220y + 1)2

(12)

(13)

(14)

Letz; ...z, =, ,41 = y. Then it is immediate that inequality (14) becomes exactly (10).

This finishes the proof of Theorem 2.

3 Notes and remarks

O

Remark 3. Other inequalities, connecting ¢*(n) and o*(n) were proved in [2] (in more general

forms); for example
6

= n® < p*(n)-o*(n) < n®forn > 1,
" (n) +0"(n) <nd*(n) (n=1),
v (n) +d*(n) <o*(n) (n2=1),

d'(n) -n < ¢*(n)(d"(n))* <n® (n>1),
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where d*(n) = 2 is the number of unitary divisors of n (here w(n) denotes what is r in rela-
tion (9); i.e. the number of distinct prime factors of n).

Many new inequalities on the arithmetical functions ¢, o, d, p*, o*, d* are proved in our paper
[4]. For example, we quote the relations:

o*(n) < d*(n)e(n) for any n > 3 odd,

3

o*(n) < §d*(n)g0(n) for n > 2 even. (19)
It is easy to see that
o(n) < ¢*(n), o(n) > oc*(n)and d(n) > d*(n) forn > 1. (20)
On the other hand, one has:
o*(n) < " (n)(d"(n)°, n > 1, (21)

where o = log, 3 (thus 1 < a0 < 2).
Clearly, inequalities (15) — (18) or (19) — (21) may be connected with relation (4). The right
side of (15) implies

n*c*(n) > p*(n)(c*(n))* > (n—1)(n+1)? (n>1). (22)
Another example is
¢ (n)(d"(n))*(p(n))* > *(n)(0*(n))* > (n —1)(n +1)* for n > 3 odd, (23)
which is a consequence of (19) and (4), etc.
Remark 4. In paper [5], it is proved that
o(n) > n+ (w(n) — 1)y/n forn > 2. (24)

As an application of (24), it is shown that

o(n) > n + +/nif and only if n # prime, (25)
o(n) > n+ v/n + ¢/n if and only if n # prime and n # (prime)?. (26)

It is immediate that, o(n) > v (n) for any n > 1. In paper [6], it is shown that

o(n) < %2 -1p(n) forn > 1. (26)
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2
As % < 1,7 < 2, particularly we get o(n) < 2i(n). A stronger inequality than this last

one — which is however not comparable with (26) — is due to Ch. Wall (see [3]):

on)+o* (n)

¥(n) > 5 (27)
By (20) we get
() = win) > T 5 gy (25)
which particularly shows that, 1)(n) lies between o*(n) and o(n).
4 Related results
By using relations (1) and (2), one can deduce the following formulae:
. 1
et =TT (1=~ ) (29
=1 ?
. 1
oo =t JT (1- ). (30
i=1 (
. 1
et =TT (1- ). 1)

=1

T
where n = H p;* is the prime factorization of n > 1.

=1

Theorem 3. For all n > 1 one has

p(n)v(n) < p(n)o(n) < ¢*(n)o*(n) <n® -1, (32)
o(n)o(n) < n*— % <n?-—1, (33)
p(n)(n) < n®— (%) <n?-1, (34)

where y(n) = H p; denotes the “core of n” (see e.g. [3] for this function).
i=1
Proof. As 2 < a; + 1 < 2a,, the first two inequalities of (32) are consequences of relations
(29) — (31). For the last inequality of (32) use the classical (Weierstrass-type) inequality:
(k1 —)(x2—1) ... (2, — 1) < my29. .. 10 — 1, (35)

where r > 1 is integer, and x; > 1 (i = 1,2,...,r) are arbitrary real numbers. Apply now (35)
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for z; = p2* in order to deduce the last inequality of (32).
Applying (35) for z; = p»*!, we get the first inequality of (33). By n > ~(n), clearly the

last relation of (33) follows, too. Finally, apply (35) for z; = p? for the proof of (34). O

Theorem 4. For any n > 1, the following refinement of (26) holds true:

Y(n) _ p(my(n) 6 (36)

o(n) n? 2

Proof. The first inequality of (36) follows by ¢(n)o(n) < n?, which is contained particularly in
(32). For the second inequality of (36) remark that by (31),

¢<n>¢<n>:n2-ﬁ(1—]§)>n2- I (-5).

=1 i p prime

where p runs through the set of all prime numbers. It is well-known, from the Euler product
representation of the zeta function that

oEh 6

p prime
Particularly,
1\~ 1 1 6
p prime p p prime p <(2> T
=1 w2
by the Eul i E——
y the Euler series ; = G
This proves the second inequality of (36). ]

Remark 5. By (32), the right side of (36) offers also a strong refinement of left side of (15).
The lower bound from the second inequality of (36) is best possible in a sense, since there
exists a sequence (ny) such that

k—o0 n
k

p(ne)y(ne) _ 6

namely ny = p1ps . .. pg, where p now is the kth prime number.
For certain particular values of n, however, better lower bounds will be provided by:

Theorem 5. Let p(n), resp. P(n) denote the least, resp. largest prime factors of n. Then
p(n)i(n) 1 1
—t > 1= — 1+ —=—. 37
w2\ e )\ P o
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Proof. We will use the remark that

pi+1 > Dit1
Di Div1 — 1

,fori=1,2,...,k—1 (38)

where 2 < p; < ps < ... < p; are the distinct prime factors of n.
Indeed, (38) is in fact p;1; — p; > 1. Now, by

w(n):p1+1.P2+1 pr—1+1 ppt1

n p1 D2 Pr—1 Pk
and (38), we can write
vn) o po P _pk+1:p1—1_pk+1< pi Pk )
n Tp=1 p—1 p1 P \p—1 pp—1
where the parenthesis is in fact .
p(n)
Since p; = p(n), pr = P(n), inequality (37) follows. O

Corollary. If n > 3 is odd, then

p(n)v(n) _ 2 1 2_ 6
— 2> |1+ =) > > —. 39
n? —3 T P(n) 3 m? (39)
) 1 1 . .
Proof. Since 1 — o) >1-— 3 (by p(n) > 3), from (37) we get the first inequality. The last
p(n
inequality holds, as 72 > 9. O

Remark 6. If n > 2 even, we get

p(n)(n) _ 1 1
T > 14— ). 40
2 ~2\ P (40)
. . . 6 . 2 .
The right side of (40) is > —; only if P(n) < T 4.6,...,s0 P(n) < 3,1i.e., when n
T -7

is of the form n = 2% - 3° (a > 1, b > 0 integers).
If n > 3 is odd, not divisible by 3, then (39) may be refined

p)p(n) _ 4 ( 1 )

1+ >4>2
n? ) 57 3

P(n)
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