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1 Introduction

Let ϕ(n), ψ(n) and σ(n) denote the classical arithmetic functions, representing Euler’s totient,
Dedekind’s function, and the sum of divisors function respectively.

It is well-known that these functions are multiplicative, and for prime powers n = pa (p prime,
a ≥ 1 integer) one has

ϕ(pa) = pa
(
1− 1

p

)
, ψ(pa) = pa

(
1 +

1

p

)
, σ(pa) =

pa+1 − 1

p− 1
. (1)

We have also by definition ϕ(1) = ψ(1) = σ(1) = 1.
In what follows, we shall need also the unitary analogues of the functions ϕ and σ; namely

the arithmetical functions ϕ∗(n) and σ∗(n) (connected with the “unitary divisors” of n; see e.g.
[2, 3] for many properties and references).

These functions are also multiplicative, and for prime powers they take the values

ϕ∗(pa) = pa − 1, σ∗(pa) = pa + 1. (2)
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In a recent paper [1], K. T. Atanassov proved the following interesting inequality:

Theorem 1. For all integers n ≥ 1 we have the inequality

ϕ(n)ψ(n)σ(n) ≥ (n− 1)(n+ 1)2. (3)

Remark 1. It is well-known that, ϕ(n) ≤ n− 1 for all n ≥ 2 and ψ(n) ≥ n+ 1, σ(n) ≥ n+ 1.
So relation (3) is not a consequence of known inequalities. For n = p = prime there is equality.

In what follows, we shall prove the following refinement of (3) (so a new proof of (3) will be
given, too):

Theorem 2. For all n ≥ 1 one has the inequalities

ϕ(n)ψ(n)σ(n) ≥ ϕ∗(n)(σ∗(n))2 ≥ (n− 1)(n+ 1)2. (4)

There is equality in the first relation of (4) only when n is squarefree, or n = 1, while in the
second one only when n is a prime power.

2 Proof of main result

For the first term of inequality (4), remark that both members are multiplicative functions. So,

if n =
r∏
i=1

paii is the prime factorization of n > 1, it will be sufficient to prove the inequality

for a prime power paii . Then, the general result follows by a term-by-term multiplication of these
inequality. Let for simplicity denote pa ≡ paii . Then we have to prove the relation (by using (1)

and (2)):
p2a−2(p+ 1)(pa+1 − 1) ≥ (pa − 1)(pa + 1)2. (5)

After elementary transformations, (5) may be written also as:

p3a−1 + pa + 1 ≥ p2a + p2a−1 + p2a−2. (6)

We shall prove this inequality by induction upon a ≥ 1. For a = 1, the relation is true (in fact,
there is equality in (6)). Assuming (6) for a, let us try to prove it for a + 1. By multiplying both
sides of (6) by p2, we get

p3a+1 + pa+2 + p2 ≥ p2a+2 + p2a+1 + p2a = A,

and remark that A is in fact the right side of (6) for a := a+ 1. Therefore, it will be sufficient to
prove that the left side of (6) for a := a+ 1 satisfies:

p3a+2 + pa+1 + 1 ≥ p3a+1 + pa+2 + p2. (7)
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This may be written also as

p3a+1(p− 1) ≥ pa+1(p− 1) + p2 − 1,

i.e.
p3a+1 ≥ pa+1 + p+ 1. (8)

Now, inequality (8) is trivial, since equivalently states that

pa+1(p2a − 1) ≥ p+ 1,

and the left sides contains also

p2a − 1 = (pa + 1)(p− 1) ≥ (p+ 1)(p− 1) ≥ p+ 1

(the inequality is in fact strict).

Remark. The above proof shows in fact that, the inequality (6) is strict for a > 1. Thus one has
equality in (5) only for a = 1, and this implies that there is equality for n > 1 in left side of (4)
only when n is a product of distinct primes, i.e. n = squarefree.

Now, the second inequality of (3), when

n =
r∏
i=1

paii =
r∏
i=1

xi > 1

can be rewritten as:

(x1 − 1) . . . (xr − 1)(x1 + 1)2 . . . (xr + 1)2 ≥ (x1 . . . xr − 1)(x1 . . . xr + 1)2, (9)

where r ≥ 1 and xi = paii . Clearly, there is equality in (9) for r = 1 (i.e., when n is a prime
power); we shall prove that for r > 1 there is strict inequality.

First we prove the inequality for r = 2. The general case – via mathematical induction –
will be reduced essentially to this case. Put for simplicity x1 = x, x2 = y when the inequality
becomes

(x− 1)(x+ 1)2(y − 1)(y + 1)2 > (xy − 1)(xy + 1)2. (10)

Here x ≥ 2 and y ≥ 3 (as p1 ≥ 2, p2 ≥ 3 are distinct primes).
As (x− 1)(x+ 1)2 = x3 + x2 − x− 1, etc.; (10) may be written also as

(x3 + x2 − x− 1)(y3 + y2 − y − 1) > x3y3 + x2y2 − xy − 1,

or
x3(y2 − y − 1) + x2(y3 − y − 1) > x(y3 + y2 − 2y − 1) + y3 + y2 − y − 2. (11)

54



Write this as

x[x(y3 − y − 1)− (y3 + y2 − 2y − 1)] + x3(y2 − y − 1) > y3 + y2 − y − 2. (12)

Here
x(y3 − y − 1)− (y3 + y2 − 2y − 1) ≥ 2(y3 − y − 1)− (y3 + y2 − 2y − 1)

= y3 − y2 − 1 > 0

by x ≥ 2. Thus, the left side of (12) is

≥ 2(y3 − y2 − 1) + 8(y2 − y − 1) > y3 + y2 − y − 2,

as this is
y3 + 5y2 − 7y − 8 > 0.

Now,
y(y2 + 5y − 7) ≥ 3(9 + 15− 7) = 51 > 8,

and this proves (12), i.e. (10).
Now, assuming (9) for r > 1, let us try to prove it for r + 1; i.e.

(x1 − 1) . . . (xr − 1)(xr+1 − 1)(x1 + 1)2 . . . (xr + 1)2(xr+1 + 1)2

> (x1 . . . xrxr+1 − 1)(x1 . . . xrxr+1 + 1)2. (13)

By multiplying both sides of (9) with (xr+1 − 1)(xr+1 + 1)2, it is sufficient to prove that

(x1 . . . xr − 1)(x1 . . . xr + 1)2(xr+1 − 1)(xr+1 + 1)2

> (x1 . . . xrxr+1 − 1)(x1 . . . xrxr+1 + 1)2 (14)

Let x1 . . . xr = x, xr+1 = y. Then it is immediate that inequality (14) becomes exactly (10).
This finishes the proof of Theorem 2. �

3 Notes and remarks

Remark 3. Other inequalities, connecting ϕ∗(n) and σ∗(n) were proved in [2] (in more general
forms); for example

6

π2
· n2 < ϕ∗(n) · σ∗(n) < n2 for n > 1, (15)

ϕ∗(n) + σ∗(n) ≤ nd∗(n) (n ≥ 1), (16)

ϕ∗(n) + d∗(n) ≤ σ∗(n) (n ≥ 1), (17)

d∗(n) · n ≤ ϕ∗(n)(d∗(n))2 ≤ n2 (n ≥ 1), (18)
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where d∗(n) = 2ω(n) is the number of unitary divisors of n (here ω(n) denotes what is r in rela-
tion (9); i.e. the number of distinct prime factors of n).

Many new inequalities on the arithmetical functions ϕ, σ, d, ϕ∗, σ∗, d∗ are proved in our paper
[4]. For example, we quote the relations:

σ∗(n) ≤ d∗(n)ϕ(n) for any n ≥ 3 odd,

σ∗(n) ≤ 3

2
d∗(n)ϕ(n) for n ≥ 2 even. (19)

It is easy to see that

ϕ(n) ≤ ϕ∗(n), σ(n) ≥ σ∗(n) and d(n) ≥ d∗(n) for n ≥ 1. (20)

On the other hand, one has:

σ∗(n) ≤ ϕ∗(n)(d∗(n))α, n ≥ 1, (21)

where α = log2 3 (thus 1 < α < 2).
Clearly, inequalities (15)− (18) or (19)− (21) may be connected with relation (4). The right

side of (15) implies

n2σ∗(n) > ϕ∗(n)(σ∗(n))2 ≥ (n− 1)(n+ 1)2 (n > 1). (22)

Another example is

ϕ∗(n)(d∗(n))2(ϕ(n))2 ≥ ϕ∗(n)(σ∗(n))2 ≥ (n− 1)(n+ 1)2 for n ≥ 3 odd, (23)

which is a consequence of (19) and (4), etc.

Remark 4. In paper [5], it is proved that

σ(n) > n+ (ω(n)− 1)
√
n for n ≥ 2. (24)

As an application of (24), it is shown that

σ(n) > n+
√
n if and only if n 6= prime, (25)

σ(n) > n+
√
n+ 3
√
n if and only if n 6= prime and n 6= (prime)2. (26)

It is immediate that, σ(n) ≥ ψ(n) for any n ≥ 1. In paper [6], it is shown that

σ(n) <
π2

6
· ψ(n) for n ≥ 1. (26)
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As
π2

6
< 1, 7 < 2, particularly we get σ(n) < 2ψ(n). A stronger inequality than this last

one – which is however not comparable with (26) – is due to Ch. Wall (see [3]):

ψ(n) ≥ σ(n) + σ∗(n)

2
. (27)

By (20) we get

σ(n) ≥ ψ(n) ≥ σ(n) + σ∗(n)

2
≥ σ∗(n) (28)

which particularly shows that, ψ(n) lies between σ∗(n) and σ(n).

4 Related results

By using relations (1) and (2), one can deduce the following formulae:

ϕ(n)σ(n) = n2 ·
r∏
i=1

(
1− 1

pai+1
i

)
, (29)

ϕ∗(n)σ∗(n) = n2 ·
r∏
i=1

(
1− 1

p2aii

)
, (30)

ϕ(n)ψ(n) = n2 ·
r∏
i=1

(
1− 1

p2i

)
, (31)

where n =
r∏
i=1

paii is the prime factorization of n > 1.

Theorem 3. For all n > 1 one has

ϕ(n)ψ(n) ≤ ϕ(n)σ(n) ≤ ϕ∗(n)σ∗(n) ≤ n2 − 1, (32)

ϕ(n)σ(n) ≤ n2 − n

γ(n)
≤ n2 − 1, (33)

ϕ(n)ψ(n) ≤ n2 −
(

n

γ(n)

)2

≤ n2 − 1, (34)

where γ(n) =
r∏
i=1

pi denotes the ”core of n” (see e.g. [3] for this function).

Proof. As 2 ≤ ai + 1 ≤ 2ai, the first two inequalities of (32) are consequences of relations
(29)− (31). For the last inequality of (32) use the classical (Weierstrass-type) inequality:

(x1 − 1)(x2 − 1) . . . (xr − 1) ≤ x1x2 . . . xr − 1, (35)

where r ≥ 1 is integer, and xi > 1 (i = 1, 2, . . . , r) are arbitrary real numbers. Apply now (35)
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for xi = p2aii in order to deduce the last inequality of (32).
Applying (35) for xi = pai+1

i , we get the first inequality of (33). By n ≥ γ(n), clearly the
last relation of (33) follows, too. Finally, apply (35) for xi = p2i for the proof of (34). �

Theorem 4. For any n > 1, the following refinement of (26) holds true:

ψ(n)

σ(n)
>
ϕ(n)ψ(n)

n2
>

6

π2
. (36)

Proof. The first inequality of (36) follows by ϕ(n)σ(n) < n2, which is contained particularly in
(32). For the second inequality of (36) remark that by (31),

ϕ(n)ψ(n) = n2 ·
n∏
i=1

(
1− 1

p2i

)
> n2 ·

∏
p prime

(
1− 1

p2

)
,

where p runs through the set of all prime numbers. It is well-known, from the Euler product
representation of the zeta function that

ζ(s) =
∞∑
k=1

1

nk
=

∏
p prime

(
1− 1

ps

)−1
.

Particularly,

ζ(2) =
∏

p prime

(
1− 1

p2

)−1
, i.e.

∏
p prime

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2

by the Euler series
∞∑
k=1

1

n2
=
π2

6
.

This proves the second inequality of (36). �

Remark 5. By (32), the right side of (36) offers also a strong refinement of left side of (15).
The lower bound from the second inequality of (36) is best possible in a sense, since there

exists a sequence (nk) such that

lim
k→∞

ϕ(nk)ψ(nk)

n2
k

=
6

π2
,

namely nk = p1p2 . . . pk, where pk now is the kth prime number.
For certain particular values of n, however, better lower bounds will be provided by:

Theorem 5. Let p(n), resp. P (n) denote the least, resp. largest prime factors of n. Then

ϕ(n)ψ(n)

n2
≥
(
1− 1

p(n)

)(
1 +

1

P (n)

)
. (37)
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Proof. We will use the remark that

pi + 1

pi
≥ pi+1

pi+1 − 1
, for i = 1, 2, . . . , k − 1 (38)

where 2 ≤ p1 < p2 < . . . < pk are the distinct prime factors of n.
Indeed, (38) is in fact pi+1 − pi ≥ 1. Now, by

ψ(n)

n
=
p1 + 1

p1
· p2 + 1

p2
. . .

pk−1 + 1

pk−1
· pk + 1

pk

and (38), we can write

ψ(n)

n
≥ p2
p2 − 1

. . .
pk

pk − 1
· pk + 1

pk
=
p1 − 1

p1
· pk + 1

pk

(
p1

p1 − 1
. . .

pk
pk − 1

)
,

where the parenthesis is in fact
n

ϕ(n)
.

Since p1 = p(n), pk = P (n), inequality (37) follows. �

Corollary. If n ≥ 3 is odd, then

ϕ(n)ψ(n)

n2
≥ 2

3

(
1 +

1

P (n)

)
>

2

3
>

6

π2
. (39)

Proof. Since 1 − 1

p(n)
≥ 1 − 1

3
(by p(n) ≥ 3), from (37) we get the first inequality. The last

inequality holds, as π2 > 9. �

Remark 6. If n ≥ 2 even, we get

ϕ(n)ψ(n)

n2
≥ 1

2

(
1 +

1

P (n)

)
. (40)

The right side of (40) is >
6

π2
only if P (n) <

π2

12− π2
= 4.6, . . ., so P (n) ≤ 3, i.e., when n

is of the form n = 2a · 3b (a ≥ 1, b ≥ 0 integers).
If n ≥ 3 is odd, not divisible by 3, then (39) may be refined

ϕ(n)ψ(n)

n2
≥ 4

5

(
1 +

1

P (n)

)
>

4

5
>

2

3
. (41)
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