Rafael Jakimczuk
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 19, 2013, Number 1, Pages 55–58
Full paper (PDF, 148 Kb)
Details
Authors and affiliations
Rafael Jakimczuk
División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina
Abstract
Let P(n) be the greatest prime factor of a positive integer n ≥ 2. Let L (n) be the number of 2 ≤ k ≤ n such that P(k) > kα, where 0 < α < 1. We prove the following asymptotic formula
where ρ(α) is the Dickman’s function.
Keywords
- Greatest prime factor
- Distribution
AMS Classification
- 11A99
- 11B99
References
- Kemeny, J. Largest prime factor, J. Pure Appl. Algebra, Vol. 89, 1993, 181–186.
- LeVeque, W. J. Topics in Number Theory, Addison-Wesley, 1958.
- Ramaswami, R. On the number of positive integers less than x and free of prime divisors greater than xc, Bull. Amer. Math. Soc., Vol. 55, 1949, 1122–1127.
Related papers
Cite this paper
Jakimczuk, R. (2013). A note on the density of the Greatest Prime Factor. Notes on Number Theory and Discrete Mathematics, 19(1), 55-58.