Rafael Jakimczuk
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 19, 2013, Number 1, Pages 55–58
Full paper (PDF, 148 Kb)
Details
Authors and affiliations
Rafael Jakimczuk ![]()
División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina
Abstract
Let P(n) be the greatest prime factor of a positive integer n ≥ 2. Let L (n) be the number of 2 ≤ k ≤ n such that P(k) > kα, where 0 < α < 1. We prove the following asymptotic formula

where ρ(α) is the Dickman’s function.
Keywords
- Greatest prime factor
- Distribution
AMS Classification
- 11A99
- 11B99
References
- Kemeny, J. Largest prime factor, J. Pure Appl. Algebra, Vol. 89, 1993, 181–186.
- LeVeque, W. J. Topics in Number Theory, Addison-Wesley, 1958.
- Ramaswami, R. On the number of positive integers less than x and free of prime divisors greater than xc, Bull. Amer. Math. Soc., Vol. 55, 1949, 1122–1127.
Related papers
Cite this paper
Jakimczuk, R. (2013). A note on the density of the Greatest Prime Factor. Notes on Number Theory and Discrete Mathematics, 19(1), 55-58.
